|

Arduino四轴飞行器

它不仅是一架四轴飞行器……这是一台开源机器!

组件和耗材

GY-521 MPU-6050用于Arduino的3轴陀螺仪+加速度计模块

Arduino Nano R3

项目介绍

它不仅是一架四轴飞行器……这是一台开源机器!

你们中的许多人在飞行控制器方面面临一个问题,飞行控制器是多旋翼机的大脑。市场上有很多现成的预闪飞行控制器,价格便宜,但是你有没有想过用你的Arduino构建自己的飞行控制器?因此,这是使用 Arduino 为您的四轴飞行器或多旋翼飞机了解和构建自己的飞行控制器的正确位置。

现在问题来了,我从哪里以及如何获得四轴飞行器的代码?所以答案是Multiwii。

MultiWii是一款非常流行的飞行控制器软件,用于拥有大型社区的DIY多旋翼飞机。它支持各种具有高级功能的多旋翼飞行器,例如智能手机的蓝牙控制、OLED 显示屏、气压计、磁力计、GPS 位置保持和返回家园、LED 灯条等等。因此,让我们使用Arduino构建我们的飞行控制器!

第 1 步:飞控设计

以下是飞控板的原理图。您可以在通用 PCB 上制作一个,也可以像我一样从制造商那里订购 PCB。

电调连接

  1. D3 << ESC 1 信号引脚
  2. D9 << ESC 3 信号引脚
  3. D10 << ESC 2 信号引脚
  4. D11 << ESC 4 信号引脚

蓝牙模块连接

  1. TX << RX
  2. RX << TX

MPU-6050 连接

  1. A4 << SDA
  2. A5 << 标准及校正法

LED印度卡托

  1. D8 << LED 阳极支路

接收器连接

  1. D2 <<油门
  2. D4 << Elerons
  3. D5 <<副翼
  4. D6 <<舵
  5. D7 << AUX 1

第 2 步:构建框架

我买了一个 DJI 450 框架,并在上面安装了我的电机和所有东西。你可以看到关于我是如何做到的的视频。

第 3 步:将飞控安装到框架上

然后最后将电调和接收器连接到电路板上,如原理图所示,一切就完成了!

代码

MultiWii.ino

#include "Arduino.h"
#include "config.h"
#include "def.h"
#include   "types.h"
#include "GPS.h"
#include "Serial.h"
#include "Sensors.h"
#include   "MultiWii.h"
#include "EEPROM.h"
#include <math.h>

#if GPS

//Function   prototypes for other GPS functions
//These perhaps could go to the gps.h file,   however these are local to the gps.cpp  
static void GPS_bearing(int32_t* lat1,   int32_t* lon1, int32_t* lat2, int32_t* lon2, int32_t* bearing);
static void GPS_distance_cm(int32_t*   lat1, int32_t* lon1, int32_t* lat2, int32_t* lon2,uint32_t* dist);
static void   GPS_calc_velocity(void);
static void GPS_calc_location_error( int32_t* target_lat,   int32_t* target_lng, int32_t* gps_lat, int32_t* gps_lng );
static void GPS_calc_poshold(void);
static   uint16_t GPS_calc_desired_speed(uint16_t max_speed, bool _slow);
static void   GPS_calc_nav_rate(uint16_t max_speed);
int32_t wrap_18000(int32_t ang);
static   bool check_missed_wp(void);
void GPS_calc_longitude_scaling(int32_t lat);
static   void GPS_update_crosstrack(void);
int32_t wrap_36000(int32_t ang);


//   Leadig filter - TODO: rewrite to normal C instead of C++

// Set up gps lag
#if   defined(UBLOX) || defined (MTK_BINARY19)
#define GPS_LAG 0.5f                          //UBLOX   GPS has a smaller lag than MTK and other
#else
#define GPS_LAG 1.0f                          //We   assumes that MTK GPS has a 1 sec lag
#endif  

static int32_t  GPS_coord_lead[2];               // Lead filtered gps coordinates

class LeadFilter {
public:
     LeadFilter() :
        _last_velocity(0) {
    }

    // setup min   and max radio values in CLI
    int32_t         get_position(int32_t pos, int16_t   vel, float lag_in_seconds = 1.0);
    void            clear() { _last_velocity   = 0; }

private:
    int16_t         _last_velocity;

};

int32_t   LeadFilter::get_position(int32_t pos, int16_t vel, float lag_in_seconds)
{
     int16_t accel_contribution = (vel - _last_velocity) * lag_in_seconds * lag_in_seconds;
     int16_t vel_contribution = vel * lag_in_seconds;

    // store velocity   for next iteration
    _last_velocity = vel;

    return pos + vel_contribution   + accel_contribution;
}


LeadFilter xLeadFilter;      // Long GPS lag   filter 
LeadFilter yLeadFilter;      // Lat  GPS lag filter 

typedef struct   PID_PARAM_ {
  float kP;
  float kI;
  float kD;
  float Imax;
  }   PID_PARAM;
  
PID_PARAM posholdPID_PARAM;
PID_PARAM poshold_ratePID_PARAM;
PID_PARAM   navPID_PARAM;

typedef struct PID_ {
  float   integrator; // integrator   value
  int32_t last_input; // last input for derivative
  float   lastderivative;   // last derivative for low-pass filter
  float   output;
  float   derivative;
}   PID;
PID posholdPID[2];
PID poshold_ratePID[2];
PID navPID[2];

int32_t   get_P(int32_t error, struct PID_PARAM_* pid) {
  return (float)error * pid->kP;
}

int32_t   get_I(int32_t error, float* dt, struct PID_* pid, struct PID_PARAM_* pid_param)   {
  pid->integrator += ((float)error * pid_param->kI) * *dt;
  pid->integrator   = constrain(pid->integrator,-pid_param->Imax,pid_param->Imax);
  return pid->integrator;
}
   
int32_t get_D(int32_t input, float* dt, struct PID_* pid, struct PID_PARAM_*   pid_param) { // dt in milliseconds
  pid->derivative = (input - pid->last_input)   / *dt;

  /// Low pass filter cut frequency for derivative calculation.
   float filter = 7.9577e-3; // Set to  "1 / ( 2 * PI * f_cut )";
  // Examples   for _filter:
  // f_cut = 10 Hz -> _filter = 15.9155e-3
  // f_cut = 15 Hz   -> _filter = 10.6103e-3
  // f_cut = 20 Hz -> _filter =  7.9577e-3
  // f_cut   = 25 Hz -> _filter =  6.3662e-3
  // f_cut = 30 Hz -> _filter =  5.3052e-3

   // discrete low pass filter, cuts out the
  // high frequency noise that can   drive the controller crazy
  pid->derivative = pid->lastderivative + (*dt / (   filter + *dt)) * (pid->derivative - pid->lastderivative);
  // update state
   pid->last_input = input;
  pid->lastderivative    = pid->derivative;
  //   add in derivative component
  return pid_param->kD * pid->derivative;
}

void   reset_PID(struct PID_* pid) {
  pid->integrator = 0;
  pid->last_input = 0;
   pid->lastderivative = 0;
}

#define _X 1
#define _Y 0

#define   RADX100                    0.000174532925  

uint8_t land_detect;                 //Detect   land (extern)
static uint32_t land_settle_timer;
uint8_t GPS_Frame;            //   a valid GPS_Frame was detected, and data is ready for nav computation

static   float  dTnav;            // Delta Time in milliseconds for navigation computations,   updated with every good GPS read
static int16_t actual_speed[2] = {0,0};
static   float GPS_scaleLonDown; // this is used to offset the shrinking longitude as we   go towards the poles

// The difference between the desired rate of travel   and the actual rate of travel
// updated after GPS read - 5-10hz
static int16_t   rate_error[2];
static int32_t error[2];

static int32_t GPS_WP[2];   //Currently   used WP
static int32_t GPS_FROM[2]; //the pervious waypoint for precise track   following
int32_t target_bearing;     // This is the angle from the copter to   the "next_WP" location in degrees * 100
static int32_t original_target_bearing;   // deg * 100, The original angle to the next_WP when the next_WP was set, Also   used to check when we pass a WP
static int16_t crosstrack_error;     // The amount   of angle correction applied to target_bearing to bring the copter back on its optimum   path
uint32_t wp_distance;                // distance between plane and next_WP   in cm
static uint16_t waypoint_speed_gov;  // used for slow speed wind up when   start navigation;


////////////////////////////////////////////////////////////////////////////////////
//   moving average filter variables
//

#define GPS_FILTER_VECTOR_LENGTH 5

static   uint8_t GPS_filter_index = 0;
static int32_t GPS_filter[2][GPS_FILTER_VECTOR_LENGTH];
static   int32_t GPS_filter_sum[2];
static int32_t GPS_read[2];
static int32_t GPS_filtered[2];
static   int32_t GPS_degree[2];    //the lat lon degree without any decimals (lat/10 000   000)
static uint16_t fraction3[2];

static int16_t nav_takeoff_bearing;   // saves the bearing at takeof (1deg = 1) used to rotate to takeoff direction   when arrives at home



//Main navigation processor and state engine
//   TODO: add proceesing states to ease processing burden 
uint8_t GPS_Compute(void)   {
  unsigned char axis;
  uint32_t dist;        //temp variable to store dist   to copter
  int32_t  dir;         //temp variable to store dir to copter
   static uint32_t nav_loopTimer;

  //check that we have a valid frame, if   not then return immediatly
  if (GPS_Frame == 0) return 0; else GPS_Frame = 0;

   //check home position and set it if it was not set
  if (f.GPS_FIX && GPS_numSat   >= 5) {
    #if !defined(DONT_RESET_HOME_AT_ARM)
       if (!f.ARMED) {f.GPS_FIX_HOME   = 0;}
    #endif
    if (!f.GPS_FIX_HOME && f.ARMED) {
      GPS_reset_home_position();
     }
    //Apply moving average filter to GPS data
    if (GPS_conf.filtering)   {
      GPS_filter_index = (GPS_filter_index+1) % GPS_FILTER_VECTOR_LENGTH;
       for (axis = 0; axis< 2; axis++) {
        GPS_read[axis] = GPS_coord[axis];   //latest unfiltered data is in GPS_latitude and GPS_longitude
        GPS_degree[axis]   = GPS_read[axis] / 10000000;  // get the degree to assure the sum fits to the int32_t

         // How close we are to a degree line ? its the first three digits from the   fractions of degree
        // later we use it to Check if we are close to a   degree line, if yes, disable averaging,
        fraction3[axis] = (GPS_read[axis]-   GPS_degree[axis]*10000000) / 10000;

        GPS_filter_sum[axis] -= GPS_filter[axis][GPS_filter_index];
         GPS_filter[axis][GPS_filter_index] = GPS_read[axis] - (GPS_degree[axis]*10000000);   
        GPS_filter_sum[axis] += GPS_filter[axis][GPS_filter_index];
        GPS_filtered[axis]   = GPS_filter_sum[axis] / GPS_FILTER_VECTOR_LENGTH + (GPS_degree[axis]*10000000);
         if ( NAV_state == NAV_STATE_HOLD_INFINIT || NAV_state == NAV_STATE_HOLD_TIMED)   {      //we use gps averaging only in poshold mode...
          if ( fraction3[axis]>1   && fraction3[axis]<999 ) GPS_coord[axis] = GPS_filtered[axis];
        }
       }
    }

    //dTnav calculation
    //Time for calculating x,y   speed and navigation pids
    dTnav = (float)(millis() - nav_loopTimer)/ 1000.0;
     nav_loopTimer = millis();

    // prevent runup from bad GPS
    dTnav   = min(dTnav, 1.0);  

    //calculate distance and bearings for gui and other   stuff continously - From home to copter
    GPS_bearing(&GPS_coord[LAT],&GPS_coord[LON],&GPS_home[LAT],&GPS_home[LON],&dir);
     GPS_distance_cm(&GPS_coord[LAT],&GPS_coord[LON],&GPS_home[LAT],&GPS_home[LON],&dist);
     GPS_distanceToHome = dist/100;
    GPS_directionToHome = dir/100;

     if (!f.GPS_FIX_HOME) {     //If we don't have home set, do not display anything
       GPS_distanceToHome = 0;
      GPS_directionToHome = 0;
    }

     //Check fence setting and execute RTH if neccessary
    //TODO: autolanding
     if ((GPS_conf.fence > 0) && (GPS_conf.fence < GPS_distanceToHome) && (f.GPS_mode   != GPS_MODE_RTH) ) {
      init_RTH();
    }

    //calculate the current   velocity based on gps coordinates continously to get a valid speed at the moment   when we start navigating
    GPS_calc_velocity();        

    //Navigation   state engine
    if (f.GPS_mode != GPS_MODE_NONE) {   //ok we are navigating   ###0002 
      //do gps nav calculations here, these are common for nav and poshold   
      GPS_bearing(&GPS_coord[LAT],&GPS_coord[LON],&GPS_WP[LAT],&GPS_WP[LON],&target_bearing);
       if (GPS_conf.lead_filter) {
        GPS_distance_cm(&GPS_coord_lead[LAT],&GPS_coord_lead[LON],&GPS_WP[LAT],&GPS_WP[LON],&wp_distance);
         GPS_calc_location_error(&GPS_WP[LAT],&GPS_WP[LON],&GPS_coord_lead[LAT],&GPS_coord_lead[LON]);
       } else {
        GPS_distance_cm(&GPS_coord[LAT],&GPS_coord[LON],&GPS_WP[LAT],&GPS_WP[LON],&wp_distance);
         GPS_calc_location_error(&GPS_WP[LAT],&GPS_WP[LON],&GPS_coord[LAT],&GPS_coord[LON]);
       }

      // Adjust altitude 
      // if we are holding position   and reached target altitude, then ignore altitude nav, and let the user trim alt
       if ( !((NAV_state == NAV_STATE_HOLD_INFINIT) && (alt_change_flag == REACHED_ALT)))   {
        if (!f.LAND_IN_PROGRESS) {
          alt_to_hold = get_new_altitude();
           AltHold = alt_to_hold;
        }
      }

      int16_t speed   = 0;                   //Desired navigation speed

      switch(NAV_state)                     //Navigation state machine
        {
        case NAV_STATE_NONE:                //Just for clarity, do nothing when nav_state is none
          break;

         case NAV_STATE_LAND_START:
          GPS_calc_poshold();              //Land   in position hold
          land_settle_timer = millis();
          NAV_state   = NAV_STATE_LAND_SETTLE;
          break;

        case NAV_STATE_LAND_SETTLE:
           GPS_calc_poshold();
          if (millis()-land_settle_timer > 5000)
             NAV_state = NAV_STATE_LAND_START_DESCENT;
          break;

         case NAV_STATE_LAND_START_DESCENT:
          GPS_calc_poshold();                //Land   in position hold
          f.THROTTLE_IGNORED = 1;            //Ignore Throtte   stick input
          f.GPS_BARO_MODE    = 1;            //Take control of BARO   mode
          land_detect = 0;                   //Reset land detector
          f.LAND_COMPLETED   = 0;
          f.LAND_IN_PROGRESS = 1;            // Flag land process
          NAV_state   = NAV_STATE_LAND_IN_PROGRESS;
          break;

        case NAV_STATE_LAND_IN_PROGRESS:
           GPS_calc_poshold();
          check_land();  //Call land detector
           if (f.LAND_COMPLETED) {
            nav_timer_stop = millis() + 5000;
             NAV_state = NAV_STATE_LANDED;
          }
          break;

         case NAV_STATE_LANDED:
          // Disarm if THROTTLE stick is at minimum   or 5sec past after land detected
          if (rcData[THROTTLE]<MINCHECK || nav_timer_stop   <= millis()) { //Throttle at minimum or 5sec passed.
            go_disarm();
             f.OK_TO_ARM = 0;                //Prevent rearming
            NAV_state   = NAV_STATE_NONE;     //Disable position holding.... prevent flippover
            f.GPS_BARO_MODE   = 0;
            f.LAND_COMPLETED = 0;
            f.LAND_IN_PROGRESS = 0;
             land_detect = 0;
            f.THROTTLE_IGNORED = 0;
            GPS_reset_nav();
           }
          break;

        case NAV_STATE_HOLD_INFINIT:        //Constant   position hold, no timer. Only an rcOption change can exit from this
          GPS_calc_poshold();
           break;

        case NAV_STATE_HOLD_TIMED:
          if (nav_timer_stop   == 0) {                         //We are start a timed poshold
            nav_timer_stop   = millis() + 1000*nav_hold_time;  //Set when we will continue
          } else   if (nav_timer_stop <= millis()) {           //did we reach our time limit ?
             if (mission_step.flag != MISSION_FLAG_END) {
              NAV_state   = NAV_STATE_PROCESS_NEXT;            //if yes then process next mission step
             }
            NAV_error = NAV_ERROR_TIMEWAIT;
          }
           GPS_calc_poshold();                                //BTW hold position   till next command
          break;

        case NAV_STATE_RTH_START:
           if ((alt_change_flag == REACHED_ALT) || (!GPS_conf.wait_for_rth_alt))   {             //Wait until we reach RTH altitude
            GPS_set_next_wp(&GPS_home[LAT],&GPS_home[LON],   &GPS_coord[LAT], &GPS_coord[LON]); //If we reached then change mode and start RTH
             NAV_state = NAV_STATE_RTH_ENROUTE;
            NAV_error = NAV_ERROR_NONE;
           } else {
            GPS_calc_poshold();                                                               //hold   position till we reach RTH alt
            NAV_error = NAV_ERROR_WAIT_FOR_RTH_ALT;
           }
          break;

        case NAV_STATE_RTH_ENROUTE:                                                  //Doing   RTH navigation
          speed = GPS_calc_desired_speed(GPS_conf.nav_speed_max,   GPS_conf.slow_nav); 
          GPS_calc_nav_rate(speed);
          GPS_adjust_heading();
           if ((wp_distance <= GPS_conf.wp_radius) || check_missed_wp()) {            //if   yes switch to poshold mode
            if (mission_step.parameter1 == 0) NAV_state   = NAV_STATE_HOLD_INFINIT;
            else NAV_state = NAV_STATE_LAND_START;                                    // if parameter 1 in RTH step is non 0 then land   at home
            if (GPS_conf.nav_rth_takeoff_heading) { magHold = nav_takeoff_bearing;   }
          } 
          break;

        case NAV_STATE_WP_ENROUTE:
           speed = GPS_calc_desired_speed(GPS_conf.nav_speed_max, GPS_conf.slow_nav);   
          GPS_calc_nav_rate(speed);
          GPS_adjust_heading();

           if ((wp_distance <= GPS_conf.wp_radius) || check_missed_wp()) {               //This   decides what happen when we reached the WP coordinates 
            if (mission_step.action   == MISSION_LAND) {                                  //Autoland
              NAV_state   = NAV_STATE_LAND_START;                                         //Start landing
               set_new_altitude(alt.EstAlt);                                             //Stop   any altitude changes
            } else if (mission_step.flag == MISSION_FLAG_END)   {                         //If this was the last mission step (flag set by the mission   planner), then switch to poshold
              NAV_state = NAV_STATE_HOLD_INFINIT;
               NAV_error = NAV_ERROR_FINISH;
            } else if (mission_step.action   == MISSION_HOLD_UNLIM) {                     //If mission_step was POSHOLD_UNLIM   and we reached the position then switch to poshold unlimited
              NAV_state   = NAV_STATE_HOLD_INFINIT;
              NAV_error = NAV_ERROR_FINISH;
            }   else if (mission_step.action == MISSION_HOLD_TIME) {                      //If mission_step   was a timed poshold then initiate timed poshold
              nav_hold_time =   mission_step.parameter1;
              nav_timer_stop = 0;                                                       //This   indicates that we are starting a timed poshold
              NAV_state = NAV_STATE_HOLD_TIMED;
             } else {
              NAV_state = NAV_STATE_PROCESS_NEXT;                                       //Otherwise   process next step
            }
          }
          break;

        case   NAV_STATE_DO_JUMP:
          if (jump_times < 0) {                                  //Jump   unconditionally (supposed to be -1) -10 should not be here
            next_step   = mission_step.parameter1;
            NAV_state = NAV_STATE_PROCESS_NEXT;
           }
          if (jump_times == 0) {
            jump_times = -10;                                     //reset jump counter
            if (mission_step.flag   == MISSION_FLAG_END) {         //If this was the last mission step (flag set by   the mission planner), then switch to poshold
              NAV_state = NAV_STATE_HOLD_INFINIT;
               NAV_error = NAV_ERROR_FINISH;
            } else
              NAV_state   = NAV_STATE_PROCESS_NEXT;
          }

          if (jump_times > 0) {                                   //if zero not reached do a jump
            next_step   = mission_step.parameter1;
            NAV_state = NAV_STATE_PROCESS_NEXT;
             jump_times--;
          }
          break;

        case   NAV_STATE_PROCESS_NEXT:                             //Processing next mission step
           NAV_error = NAV_ERROR_NONE;
          if (!recallWP(next_step)) { 
             abort_mission(NAV_ERROR_WP_CRC);
          } else {
            switch(mission_step.action)
               {
              //Waypoiny and hold commands all starts with an   enroute status it includes the LAND command too
              case MISSION_WAYPOINT:
               case MISSION_HOLD_TIME:
              case MISSION_HOLD_UNLIM:
               case MISSION_LAND:
                set_new_altitude(mission_step.altitude);
                 GPS_set_next_wp(&mission_step.pos[LAT], &mission_step.pos[LON],   &GPS_prev[LAT], &GPS_prev[LON]);
                if ((wp_distance/100) >= GPS_conf.safe_wp_distance)   abort_mission(NAV_ERROR_TOOFAR);
                else NAV_state = NAV_STATE_WP_ENROUTE;
                 GPS_prev[LAT] = mission_step.pos[LAT];  //Save wp coordinates for   precise route calc
                GPS_prev[LON] = mission_step.pos[LON];
                 break;
              case MISSION_RTH:
                f.GPS_head_set   = 0;
                if (GPS_conf.rth_altitude == 0 && mission_step.altitude   == 0) //if config and mission_step alt is zero 
                  set_new_altitude(alt.EstAlt);      // RTH returns at the actual altitude 
                else {
                  uint32_t   rth_alt;
                  if (mission_step.altitude == 0) rth_alt = GPS_conf.rth_altitude   * 100;   //altitude in mission step has priority
                  else rth_alt   = mission_step.altitude;

                  if (alt.EstAlt < rth_alt) set_new_altitude(rth_alt);                      //BUt only if we are below it.
                  else set_new_altitude(alt.EstAlt);
                 }
                NAV_state = NAV_STATE_RTH_START;
                break;
               case MISSION_JUMP:
                if (jump_times == -10) jump_times   = mission_step.parameter2;
                if (mission_step.parameter1 > 0 &&   mission_step.parameter1 < mission_step.number)
                  NAV_state =   NAV_STATE_DO_JUMP;
                else //Error situation, invalid jump target
                   abort_mission(NAV_ERROR_INVALID_JUMP);
                break;
               case MISSION_SET_HEADING:
                GPS_poi[LAT] = 0; GPS_poi[LON]   = 0; // zeroing this out clears the possible pervious set_poi
                if   (mission_step.parameter1 < 0) f.GPS_head_set = 0;
                else {
                   f.GPS_head_set = 1;
                  GPS_directionToPoi =   mission_step.parameter1;
                } 
                break;
              case   MISSION_SET_POI:
                GPS_poi[LAT] = mission_step.pos[LAT];
                GPS_poi[LON]   = mission_step.pos[LON];
                f.GPS_head_set = 1;
                break;
               default:                                  //if we got an unknown action   code abort mission and hold position
                abort_mission(NAV_ERROR_INVALID_DATA);
                 break;
              }
            next_step++; //Prepare   for the next step
          }
          break;
        } // switch end
     } //end of gps calcs ###0002 
  }
  return 1;
} // End of GPS_compute

//   Abort current mission with the given error code (switch to poshold_infinit)
void   abort_mission(unsigned char error_code) {
  GPS_set_next_wp(&GPS_coord[LAT],   &GPS_coord[LON],&GPS_coord[LAT], &GPS_coord[LON]);
  NAV_error = error_code;
   NAV_state = NAV_STATE_HOLD_INFINIT;
}

//Adjusting heading according   to settings - MAG mode must be enabled
void GPS_adjust_heading() {
  //TODO:   Add slow windup for large heading change
  //This controls the heading
  if   (f.GPS_head_set) { // We have seen a SET_POI or a SET_HEADING command
    if   (GPS_poi[LAT] == 0)
      magHold = wrap_18000((GPS_directionToPoi*100))/100;
     else {
      GPS_bearing(&GPS_coord[LAT],&GPS_coord[LON],&GPS_poi[LAT],&GPS_poi[LON],&GPS_directionToPoi);
       GPS_distance_cm(&GPS_coord[LAT],&GPS_coord[LON],&GPS_poi[LAT],&GPS_poi[LON],&wp_distance);
       magHold = GPS_directionToPoi /100;
    }
  } else {                                //   heading controlled by the standard defines
    if (GPS_conf.nav_controls_heading)   {
      if (GPS_conf.nav_tail_first) {
        magHold = wrap_18000(target_bearing-18000)/100;
       } else {
        magHold = wrap_18000(target_bearing)/100;
      }
     }
  }
}

#define LAND_DETECT_THRESHOLD 40      //Counts of land   situation
#define BAROPIDMIN           -180     //BaroPID reach this if we landed.....

//Check   if we landed or not
void check_land() {
  // detect whether we have landed   by watching for low climb rate and throttle control
  if ( (abs(alt.vario) <   20) && (BaroPID < BAROPIDMIN)) {
    if (!f.LAND_COMPLETED) {
      if( land_detect   < LAND_DETECT_THRESHOLD) {
        land_detect++;
      } else {
        f.LAND_COMPLETED   = 1;
        land_detect = 0;
      }
    }
  } else {
    // we've   detected movement up or down so reset land_detector
    land_detect = 0;
     if(f.LAND_COMPLETED) {
      f.LAND_COMPLETED = 0;
    }
  }
}

int32_t   get_altitude_error() {
  return alt_to_hold - alt.EstAlt;
}

void clear_new_altitude()   {
  alt_change_flag = REACHED_ALT;
}

void force_new_altitude(int32_t   _new_alt) {
  alt_to_hold     = _new_alt;
  target_altitude = _new_alt;
   alt_change_flag = REACHED_ALT;
}

void set_new_altitude(int32_t _new_alt)   {
  //Limit maximum altitude command
  if(_new_alt > GPS_conf.nav_max_altitude*100)   _new_alt = GPS_conf.nav_max_altitude * 100;
  if(_new_alt == alt.EstAlt){
     force_new_altitude(_new_alt);
    return;
  }
  // We start at the   current location altitude and gradually change alt
  alt_to_hold = alt.EstAlt;
   // for calculating the delta time
  alt_change_timer = millis();
  // save   the target altitude
  target_altitude = _new_alt;
  // reset our altitude   integrator
  alt_change = 0;
  // save the original altitude
  original_altitude   = alt.EstAlt;
  // to decide if we have reached the target altitude
  if(target_altitude   > original_altitude){
    // we are below, going up
    alt_change_flag =   ASCENDING;
  } else if(target_altitude < original_altitude){
    // we are   above, going down
    alt_change_flag = DESCENDING;
  } else {
    // No   Change
    alt_change_flag = REACHED_ALT;
  }
}

int32_t get_new_altitude()   {
  // returns a new altitude which feeded into the alt.hold controller
  if(alt_change_flag   == ASCENDING) {
    // we are below, going up
    if(alt.EstAlt >=  target_altitude)   alt_change_flag = REACHED_ALT; 
    // we shouldn't command past our target
     if(alt_to_hold >=  target_altitude) return target_altitude; 
  } else if   (alt_change_flag == DESCENDING) {
    // we are above, going down
    if(alt.EstAlt   <=  target_altitude) alt_change_flag = REACHED_ALT;
    // we shouldn't command   past our target
    if(alt_to_hold <=  target_altitude) return target_altitude;
   }
  // if we have reached our target altitude, return the target alt
  if(alt_change_flag   == REACHED_ALT) return target_altitude;

  int32_t diff  = abs(alt_to_hold   - target_altitude);
  // scale is how we generate a desired rate from the elapsed   time
  // a smaller scale means faster rates
  int8_t _scale = 4;

   if (alt_to_hold < target_altitude) {
    // we are below the target alt
     if(diff < 200) _scale = 4;
    else _scale = 3;
  } else {
    // we   are above the target, going down
    if(diff < 400) _scale = 5;  //Slow down   if only 4meters above
    if(diff < 100) _scale = 6;  //Slow down further if   within 1meter
  }

  // we use the elapsed time as our altitude offset
   // 1000 = 1 sec
  // 1000 >> 4 = 64cm/s descent by default
  int32_t change   = (millis() - alt_change_timer) >> _scale;

  if(alt_change_flag == ASCENDING){
     alt_change += change;
  } else {
     alt_change -= change;
  }
   // for generating delta time
  alt_change_timer = millis();

  return   original_altitude + alt_change;
}

////////////////////////////////////////////////////////////////////////////////////
//PID   based GPS navigation functions
//Author : EOSBandi
//Based on code and ideas   from the Arducopter team: Jason Short,Randy Mackay, Pat Hickey, Jose Julio, Jani   Hirvinen
//Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto   Navoni

//original constraint does not work with variables
int16_t constrain_int16(int16_t   amt, int16_t low, int16_t high) {
  return ((amt)<(low)?(low):((amt)>(high)?(high):(amt)));
}
////////////////////////////////////////////////////////////////////////////////////
//   this is used to offset the shrinking longitude as we go towards the poles
//   It's ok to calculate this once per waypoint setting, since it changes a little within   the reach of a multicopter
//
void GPS_calc_longitude_scaling(int32_t lat)   {
  GPS_scaleLonDown = cos(lat * 1.0e-7f * 0.01745329251f);
}

////////////////////////////////////////////////////////////////////////////////////
//   Sets the waypoint to navigate, reset neccessary variables and calculate initial   values
//
void GPS_set_next_wp(int32_t* lat_to, int32_t* lon_to, int32_t*   lat_from, int32_t* lon_from) {
  GPS_WP[LAT] = *lat_to;
  GPS_WP[LON] = *lon_to;

   GPS_FROM[LAT] = *lat_from;
  GPS_FROM[LON] = *lon_from;

  GPS_calc_longitude_scaling(*lat_to);

   GPS_bearing(&GPS_FROM[LAT],&GPS_FROM[LON],&GPS_WP[LAT],&GPS_WP[LON],&target_bearing);
   GPS_distance_cm(&GPS_FROM[LAT],&GPS_FROM[LON],&GPS_WP[LAT],&GPS_WP[LON],&wp_distance);
   GPS_calc_location_error(&GPS_WP[LAT],&GPS_WP[LON],&GPS_FROM[LAT],&GPS_FROM[LON]);
   waypoint_speed_gov = GPS_conf.nav_speed_min;
  original_target_bearing = target_bearing;

}

////////////////////////////////////////////////////////////////////////////////////
//   Check if we missed the destination somehow
//
static bool check_missed_wp(void)   {
  int32_t temp;
  temp = target_bearing - original_target_bearing;
  temp   = wrap_18000(temp);
  return (abs(temp) > 10000);   // we passed the waypoint   by 100 degrees
}

////////////////////////////////////////////////////////////////////////////////////
//   Get distance between two points in cm
// Get bearing from pos1 to pos2, returns   an 1deg = 100 precision

void GPS_bearing(int32_t* lat1, int32_t* lon1, int32_t*   lat2, int32_t* lon2, int32_t* bearing) {
  int32_t off_x = *lon2 - *lon1;
   int32_t off_y = (*lat2 - *lat1) / GPS_scaleLonDown;

  *bearing = 9000 +   atan2(-off_y, off_x) * 5729.57795f;      //Convert the output redians to 100xdeg
   if (*bearing < 0) *bearing += 36000;
}

void GPS_distance_cm(int32_t*   lat1, int32_t* lon1, int32_t* lat2, int32_t* lon2,uint32_t* dist) {
  float dLat   = (float)(*lat2 - *lat1);                                    // difference of latitude   in 1/10 000 000 degrees
  float dLon = (float)(*lon2 - *lon1) * GPS_scaleLonDown;   //x
  *dist = sqrt(sq(dLat) + sq(dLon)) * 1.11318845f;
}

//*******************************************************************************************************
//   calc_velocity_and_filtered_position - velocity in lon and lat directions calculated   from GPS position
//       and accelerometer data
// lon_speed expressed in   cm/s.  positive numbers mean moving east
// lat_speed expressed in cm/s.  positive   numbers when moving north
// Note: we use gps locations directly to calculate   velocity instead of asking gps for velocity because
//       this is more accurate   below 1.5m/s
// Note: even though the positions are projected using a lead filter,   the velocities are calculated
//       from the unaltered gps locations.  We   do not want noise from our lead filter affecting velocity
//*******************************************************************************************************
static   void GPS_calc_velocity(void){
  static int16_t speed_old[2] = {0,0};
  static   int32_t last[2] = {0,0};
  static uint8_t init = 0;

  if (init) {
     float tmp = 1.0/dTnav;
    actual_speed[_X] = (float)(GPS_coord[LON] - last[LON])   *  GPS_scaleLonDown * tmp;
    actual_speed[_Y] = (float)(GPS_coord[LAT]  - last[LAT])   * tmp;

    //TODO: Check unrealistic speed changes and signal navigation   about posibble gps signal degradation
    if (!GPS_conf.lead_filter) {
      actual_speed[_X]   = (actual_speed[_X] + speed_old[_X]) / 2;
      actual_speed[_Y] = (actual_speed[_Y]   + speed_old[_Y]) / 2;

      speed_old[_X] = actual_speed[_X];
      speed_old[_Y]   = actual_speed[_Y];
    }
  }
  init=1;

  last[LON] = GPS_coord[LON];
   last[LAT] = GPS_coord[LAT];

  if (GPS_conf.lead_filter) {
    GPS_coord_lead[LON]   = xLeadFilter.get_position(GPS_coord[LON], actual_speed[_X], GPS_LAG);
    GPS_coord_lead[LAT]   = yLeadFilter.get_position(GPS_coord[LAT], actual_speed[_Y], GPS_LAG);
  }
}

////////////////////////////////////////////////////////////////////////////////////
//   Calculate a location error between two gps coordinates
// Because we are using   lat and lon to do our distance errors here's a quick chart:
//   100  = 1m
//   1000  = 11m    = 36 feet
//  1800  = 19.80m = 60 feet
//  3000  = 33m
//   10000  = 111m
//
static void GPS_calc_location_error( int32_t* target_lat,   int32_t* target_lng, int32_t* gps_lat, int32_t* gps_lng ) {
  error[LON] = (float)(*target_lng   - *gps_lng) * GPS_scaleLonDown;  // X Error
  error[LAT] = *target_lat - *gps_lat;   // Y Error
}

////////////////////////////////////////////////////////////////////////////////////
//   Calculate nav_lat and nav_lon from the x and y error and the speed
//
// TODO:   check that the poshold target speed constraint can be increased for snappier poshold   lock
static void GPS_calc_poshold(void) {
  int32_t d;
  int32_t target_speed;
   uint8_t axis;
  
  for (axis=0;axis<2;axis++) {
    target_speed = get_P(error[axis],   &posholdPID_PARAM); // calculate desired speed from lat/lon error
    target_speed   = constrain(target_speed,-100,100);      // Constrain the target speed in poshold   mode to 1m/s it helps avoid runaways..
    rate_error[axis] = target_speed -   actual_speed[axis]; // calc the speed error

    nav[axis]      =
        get_P(rate_error[axis],                                                &poshold_ratePID_PARAM)
       +get_I(rate_error[axis]   + error[axis], &dTnav, &poshold_ratePID[axis], &poshold_ratePID_PARAM);

     d = get_D(error[axis],                    &dTnav, &poshold_ratePID[axis], &poshold_ratePID_PARAM);

     d = constrain(d, -2000, 2000);

    // get rid of noise
    if(abs(actual_speed[axis])   < 50) d = 0;

    nav[axis] +=d;
    // nav[axis]  = constrain(nav[axis],   -NAV_BANK_MAX, NAV_BANK_MAX);
    nav[axis]  = constrain_int16(nav[axis], -GPS_conf.nav_bank_max,   GPS_conf.nav_bank_max);
    navPID[axis].integrator = poshold_ratePID[axis].integrator;
   }
}

////////////////////////////////////////////////////////////////////////////////////
//   Calculate the desired nav_lat and nav_lon for distance flying such as RTH and WP
//
static   void GPS_calc_nav_rate( uint16_t max_speed) {
  float trig[2];
  int32_t target_speed[2];
   int32_t tilt;
  uint8_t axis;

  GPS_update_crosstrack();
  int16_t   cross_speed = crosstrack_error * (GPS_conf.crosstrack_gain / 100.0);  //check is   it ok ?
  cross_speed = constrain(cross_speed,-200,200);
  cross_speed = -cross_speed;

   float temp = (9000l - target_bearing) * RADX100;
  trig[_X] = cos(temp);
   trig[_Y] = sin(temp);

  target_speed[_X] = max_speed * trig[_X] - cross_speed   * trig[_Y];
  target_speed[_Y] = cross_speed * trig[_X] + max_speed * trig[_Y];

   for (axis=0;axis<2;axis++) {
    rate_error[axis] = target_speed[axis] - actual_speed[axis];
     rate_error[axis] = constrain(rate_error[axis],-1000,1000);
    nav[axis]       =
        get_P(rate_error[axis],                        &navPID_PARAM)
        +get_I(rate_error[axis], &dTnav, &navPID[axis], &navPID_PARAM)
       +get_D(rate_error[axis],   &dTnav, &navPID[axis], &navPID_PARAM);

    // nav[axis] = constrain(nav[axis],-NAV_BANK_MAX,NAV_BANK_MAX);
     nav[axis]  = constrain_int16(nav[axis], -GPS_conf.nav_bank_max, GPS_conf.nav_bank_max);
     poshold_ratePID[axis].integrator = navPID[axis].integrator;
  }
}

static   void GPS_update_crosstrack(void) {
  // Crosstrack Error
  // ----------------
   // If we are too far off or too close we don't do track following
  float temp   = (target_bearing - original_target_bearing) * RADX100;
  crosstrack_error =   sin(temp) * wp_distance; // Meters we are off track line
}

////////////////////////////////////////////////////////////////////////////////////
//   Determine desired speed when navigating towards a waypoint, also implement slow   
// speed rampup when starting a navigation
//
//      |< WP Radius
//       0  1   2   3   4   5   6   7   8m
//      ...|...|...|...|...|...|...|...|
//                 100  |  200     300     400cm/s
//                 |                                        +|+
//                  |< we should slow to 1 m/s as we hit the target
//
static   uint16_t GPS_calc_desired_speed(uint16_t max_speed, bool _slow) {
  if(_slow){
     max_speed = min(max_speed, wp_distance / 2);
  } else {
    max_speed   = min(max_speed, wp_distance);
    max_speed = max(max_speed, GPS_conf.nav_speed_min);   // go at least nav_speed_min
  }
  // limit the ramp up of the speed
   // waypoint_speed_gov is reset to 0 at each new WP command
  if(max_speed >   waypoint_speed_gov){
    waypoint_speed_gov += (int)(100.0 * dTnav); // increase   at .5/ms
    max_speed = waypoint_speed_gov;
  }
  return max_speed;
}

////////////////////////////////////////////////////////////////////////////////////
//   Utilities
//

int32_t wrap_36000(int32_t ang) {
  if (ang > 36000) ang   -= 36000;
  if (ang < 0)     ang += 36000;
  return ang;
}


/*
   * EOS increased the precision here, even if we think that the gps is not precise   enough, with 10e5 precision it has 76cm resolution
 * with 10e7 it's around 1   cm now. Increasing it further is irrelevant, since even 1cm resolution is unrealistic,   however increased 
 * resolution also increased precision of nav calculations
*/

#define   DIGIT_TO_VAL(_x)        (_x - '0')
uint32_t GPS_coord_to_degrees(char* s) {
   char *p, *q;
  uint8_t deg = 0, min = 0;
  unsigned int frac_min = 0;
   uint8_t i;

  // scan for decimal point or end of field
  for (p = s;   isdigit(*p); p++) ;
  q = s;

  // convert degrees
  while ((p - q)   > 2) {
    if (deg)
      deg *= 10;
    deg += DIGIT_TO_VAL(*q++);
   }
  // convert minutes
  while (p > q) {
    if (min)
      min *=   10;
    min += DIGIT_TO_VAL(*q++);
  }
  // convert fractional minutes
   // expect up to four digits, result is in
  // ten-thousandths of a minute
   if (*p == '.') {
    q = p + 1;
    for (i = 0; i < 4; i++) {
      frac_min   *= 10;
      if (isdigit(*q))
        frac_min += *q++ - '0';
    }
   }
  return deg * 10000000UL + (min * 1000000UL + frac_min*100UL) / 6;
}

//   helper functions 
uint16_t grab_fields(char* src, uint8_t mult) {  // convert   string to uint16
  uint8_t i;
  uint16_t tmp = 0;

  for(i=0; src[i]!=0;   i++) {
    if(src[i] == '.') {
      i++;
      if(mult==0)   break;
       else  src[i+mult] = 0;
    }
    tmp *= 10;
    if(src[i] >='0' &&   src[i] <='9') tmp += src[i]-'0';
  }
  return tmp;
}

uint8_t hex_c(uint8_t   n) {    // convert '0'..'9','A'..'F' to 0..15
  n -= '0';
  if(n>9)  n -=   7;
  n &= 0x0F;
  return n;
} 

//************************************************************************
//   Common GPS functions 
//
void init_RTH() {
  f.GPS_mode = GPS_MODE_RTH;            // Set GPS_mode to RTH
  f.GPS_BARO_MODE = true;
  GPS_hold[LAT]   = GPS_coord[LAT];      //All RTH starts with a poshold 
  GPS_hold[LON] = GPS_coord[LON];       //This allows to raise to rth altitude
  GPS_set_next_wp(&GPS_hold[LAT],&GPS_hold[LON],   &GPS_hold[LAT], &GPS_hold[LON]);
  NAV_paused_at = 0;
  if (GPS_conf.rth_altitude   == 0) set_new_altitude(alt.EstAlt);     //Return at actual altitude
  else {                                                             // RTH altitude is defined,   but we use it only if we are below it
    if (alt.EstAlt < GPS_conf.rth_altitude   * 100) 
      set_new_altitude(GPS_conf.rth_altitude * 100);
    else set_new_altitude(alt.EstAlt);
   }
  f.GPS_head_set = 0;                                               //Allow   the RTH ti handle heading
  NAV_state = NAV_STATE_RTH_START;                                  //NAV   engine status is Starting RTH.
}

void GPS_reset_home_position(void) {
   if (f.GPS_FIX && GPS_numSat >= 5) {
    GPS_home[LAT] = GPS_coord[LAT];
     GPS_home[LON] = GPS_coord[LON];
    GPS_calc_longitude_scaling(GPS_coord[LAT]);     //need an initial value for distance and bearing calc
    nav_takeoff_bearing   = att.heading;             //save takeoff heading
    //TODO: Set ground altitude
     f.GPS_FIX_HOME = 1;
  }
}

//reset navigation (stop the navigation   processor, and clear nav)
void GPS_reset_nav(void) {
  uint8_t i;

   for(i=0;i<2;i++) {
    nav[i] = 0;
    reset_PID(&posholdPID[i]);
    reset_PID(&poshold_ratePID[i]);
     reset_PID(&navPID[i]);
    NAV_state = NAV_STATE_NONE;
    //invalidate   JUMP counter
    jump_times = -10;
    //reset next step counter
    next_step   = 1;
    //Clear poi
    GPS_poi[LAT] = 0; GPS_poi[LON] = 0;
    f.GPS_head_set   = 0;
  }
}

//Get the relevant P I D values and set the PID controllers   
void GPS_set_pids(void) {
  posholdPID_PARAM.kP   = (float)conf.pid[PIDPOS].P8/100.0;
   posholdPID_PARAM.kI   = (float)conf.pid[PIDPOS].I8/100.0;
  posholdPID_PARAM.Imax   = POSHOLD_RATE_IMAX * 100;

  poshold_ratePID_PARAM.kP   = (float)conf.pid[PIDPOSR].P8/10.0;
   poshold_ratePID_PARAM.kI   = (float)conf.pid[PIDPOSR].I8/100.0;
  poshold_ratePID_PARAM.kD    = (float)conf.pid[PIDPOSR].D8/1000.0;
  poshold_ratePID_PARAM.Imax = POSHOLD_RATE_IMAX   * 100;

  navPID_PARAM.kP   = (float)conf.pid[PIDNAVR].P8/10.0;
  navPID_PARAM.kI    = (float)conf.pid[PIDNAVR].I8/100.0;
  navPID_PARAM.kD   = (float)conf.pid[PIDNAVR].D8/1000.0;
   navPID_PARAM.Imax = POSHOLD_RATE_IMAX * 100;
  }
//It was moved here since   even i2cgps code needs it
int32_t wrap_18000(int32_t ang) {
  if (ang > 18000)   ang -= 36000;
  if (ang < -18000) ang += 36000;
  return ang;
}













/**************************************************************************************/
/**************************************************************************************/
/***********************        specific  GPS device section  **************************/
/**************************************************************************************/
/**************************************************************************************/

#if   defined(GPS_SERIAL)

/**************************************************************************************/
/***********************        NMEA                          **************************/
/**************************************************************************************/
#if   defined(NMEA)
/* This is a light implementation of a GPS frame decoding
   This   should work with most of modern GPS devices configured to output NMEA frames.
    It assumes there are some NMEA GGA frames to decode on the serial bus
   Here   we use only the following data :
     - latitude
     - longitude
     -   GPS fix is/is not ok
     - GPS num sat (4 is enough to be +/- reliable)
      - GPS altitude
     - GPS speed
*/
#define FRAME_GGA  1
#define   FRAME_RMC  2

void GPS_SerialInit(void) {
  SerialOpen(GPS_SERIAL,GPS_BAUD);
   delay(1000);
}

bool GPS_newFrame(uint8_t c) {
  uint8_t frameOK =   0;
  static uint8_t param = 0, offset = 0, parity = 0;
  static char string[15];
   static uint8_t checksum_param, frame = 0;

  if (c == '$') {
    param   = 0; offset = 0; parity = 0;
  } else if (c == ',' || c == '*') {
    string[offset]   = 0;
    if (param == 0) { //frame identification
      frame = 0;
      if   (string[0] == 'G' && string[1] == 'P' && string[2] == 'G' && string[3] == 'G' &&   string[4] == 'A') frame = FRAME_GGA;
      if (string[0] == 'G' && string[1]   == 'P' && string[2] == 'R' && string[3] == 'M' && string[4] == 'C') frame = FRAME_RMC;
     } else if (frame == FRAME_GGA) {
      if      (param == 2)                     {GPS_coord[LAT]   = GPS_coord_to_degrees(string);}
      else if (param == 3 && string[0] == 'S')   GPS_coord[LAT] = -GPS_coord[LAT];
      else if (param == 4)                     {GPS_coord[LON]   = GPS_coord_to_degrees(string);}
      else if (param == 5 && string[0] == 'W')   GPS_coord[LON] = -GPS_coord[LON];
      else if (param == 6)                     {f.GPS_FIX   = (string[0]  > '0');}
      else if (param == 7)                     {GPS_numSat   = grab_fields(string,0);}
      else if (param == 9)                     {GPS_altitude   = grab_fields(string,0);}  // altitude in meters added by Mis
    } else if (frame   == FRAME_RMC) {
      if      (param == 7)                     {GPS_speed = ((uint32_t)grab_fields(string,1)*5144L)/1000L;}   //gps speed in cm/s will be used for navigation
      else if (param == 8)                      {GPS_ground_course = grab_fields(string,1); }                 //ground   course deg*10 
    }
    param++; offset = 0;
    if (c == '*') checksum_param=1;
     else parity ^= c;
  } else if (c == '\' || c == '\
') {
    if (checksum_param)   { //parity checksum
      uint8_t checksum = hex_c(string[0]);
      checksum   <<= 4;
      checksum += hex_c(string[1]);
      if (checksum == parity) frameOK   = 1;
    }
    checksum_param=0;
  } else {
     if (offset < 15) string[offset++]   = c;
     if (!checksum_param) parity ^= c;
  }
  return frameOK && (frame==FRAME_GGA);
}
#endif   //NMEA



/**************************************************************************************/
/***********************        UBLOX                         **************************/
/**************************************************************************************/
#if   defined(UBLOX)
const char UBLOX_INIT[] PROGMEM = {                                                  //   PROGMEM array must be outside any function !!!
  0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x05,0x00,0xFF,0x19,                             //disable all default NMEA messages
  0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x03,0x00,0xFD,0x15,
   0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x01,0x00,0xFB,0x11,
  0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x00,0x00,0xFA,0x0F,
   0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x02,0x00,0xFC,0x13,
  0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x04,0x00,0xFE,0x17,
   0xB5,0x62,0x06,0x01,0x03,0x00,0x01,0x02,0x01,0x0E,0x47,                            //set   POSLLH MSG rate
  0xB5,0x62,0x06,0x01,0x03,0x00,0x01,0x03,0x01,0x0F,0x49,                            //set   STATUS MSG rate
  0xB5,0x62,0x06,0x01,0x03,0x00,0x01,0x06,0x01,0x12,0x4F,                            //set   SOL MSG rate
  0xB5,0x62,0x06,0x01,0x03,0x00,0x01,0x12,0x01,0x1E,0x67,                            //set   VELNED MSG rate
  0xB5,0x62,0x06,0x16,0x08,0x00,0x03,0x07,0x03,0x00,0x51,0x08,0x00,0x00,0x8A,0x41,    //set WAAS to EGNOS
  0xB5, 0x62, 0x06, 0x08, 0x06, 0x00, 0xC8, 0x00, 0x01,   0x00, 0x01, 0x00, 0xDE, 0x6A //set rate to 5Hz
};

struct ubx_header {
   uint8_t preamble1;
  uint8_t preamble2;
  uint8_t msg_class;
  uint8_t   msg_id;
  uint16_t length;
};
struct ubx_nav_posllh {
  uint32_t time;   // GPS msToW
  int32_t longitude;
  int32_t latitude;
  int32_t altitude_ellipsoid;
   int32_t altitude_msl;
  uint32_t horizontal_accuracy;
  uint32_t vertical_accuracy;
};
struct   ubx_nav_solution {
  uint32_t time;
  int32_t time_nsec;
  int16_t week;
   uint8_t fix_type;
  uint8_t fix_status;
  int32_t ecef_x;
  int32_t ecef_y;
   int32_t ecef_z;
  uint32_t position_accuracy_3d;
  int32_t ecef_x_velocity;
   int32_t ecef_y_velocity;
  int32_t ecef_z_velocity;
  uint32_t speed_accuracy;
   uint16_t position_DOP;
  uint8_t res;
  uint8_t satellites;
  uint32_t   res2;
};
struct ubx_nav_velned {
  uint32_t time;  // GPS msToW
  int32_t   ned_north;
  int32_t ned_east;
  int32_t ned_down;
  uint32_t speed_3d;
   uint32_t speed_2d;
  int32_t heading_2d;
  uint32_t speed_accuracy;
   uint32_t heading_accuracy;
};

enum ubs_protocol_bytes {
  PREAMBLE1   = 0xb5,
  PREAMBLE2 = 0x62,
  CLASS_NAV = 0x01,
  CLASS_ACK = 0x05,
   CLASS_CFG = 0x06,
  MSG_ACK_NACK = 0x00,
  MSG_ACK_ACK = 0x01,
  MSG_POSLLH   = 0x2,
  MSG_STATUS = 0x3,
  MSG_SOL = 0x6,
  MSG_VELNED = 0x12,
  MSG_CFG_PRT   = 0x00,
  MSG_CFG_RATE = 0x08,
  MSG_CFG_SET_RATE = 0x01,
  MSG_CFG_NAV_SETTINGS   = 0x24
};
enum ubs_nav_fix_type {
  FIX_NONE = 0,
  FIX_DEAD_RECKONING   = 1,
  FIX_2D = 2,
  FIX_3D = 3,
  FIX_GPS_DEAD_RECKONING = 4,
  FIX_TIME   = 5
};
enum ubx_nav_status_bits {
  NAV_STATUS_FIX_VALID = 1
};

//   Receive buffer
static union {
  ubx_nav_posllh posllh;
  ubx_nav_solution   solution;
  ubx_nav_velned velned;
  uint8_t bytes[];
 } _buffer;

uint32_t   init_speed[5] = {9600,19200,38400,57600,115200};

static void SerialGpsPrint(const   char PROGMEM * str) {
  char b;
  while(str && (b = pgm_read_byte(str++)))   {
    SerialWrite(GPS_SERIAL, b); 
    delay(5);
  }
}

void GPS_SerialInit(void)   {
  SerialOpen(GPS_SERIAL,GPS_BAUD);
  delay(1000);
  for(uint8_t i=0;i<5;i++){
     SerialOpen(GPS_SERIAL,init_speed[i]);          // switch UART speed for sending   SET BAUDRATE command (NMEA mode)
    #if (GPS_BAUD==19200)
      SerialGpsPrint(PSTR("$PUBX,41,1,0003,0001,19200,0*23\\
"));      // 19200 baud - minimal speed for 5Hz update rate
    #endif  
    #if   (GPS_BAUD==38400)
      SerialGpsPrint(PSTR("$PUBX,41,1,0003,0001,38400,0*26\\
"));      // 38400 baud
    #endif  
    #if (GPS_BAUD==57600)
      SerialGpsPrint(PSTR("$PUBX,41,1,0003,0001,57600,0*2D\\
"));      // 57600 baud
    #endif  
    #if (GPS_BAUD==115200)
      SerialGpsPrint(PSTR("$PUBX,41,1,0003,0001,115200,0*1E\\
"));     // 115200 baud
    #endif  
    while(!SerialTXfree(GPS_SERIAL)) delay(10);
   }
  delay(200);
  SerialOpen(GPS_SERIAL,GPS_BAUD);  
  for(uint8_t i=0;   i<sizeof(UBLOX_INIT); i++) {                        // send configuration data in   UBX protocol
    SerialWrite(GPS_SERIAL, pgm_read_byte(UBLOX_INIT+i));
    delay(5);   //simulating a 38400baud pace (or less), otherwise commands are not accepted by   the device.
  }
}

bool GPS_newFrame(uint8_t data){
  static uint8_t   _step = 0; // State machine state
  static uint8_t  _msg_id;
  static uint16_t   _payload_length;
  static uint16_t _payload_counter;
  static uint8_t  _ck_a;   // Packet checksum accumulators
  static uint8_t  _ck_b;

  uint8_t st   = _step+1;
  bool    ret = false;
  
  if (st == 2)
    if (PREAMBLE2   != data) st--; // in case of faillure of the 2nd header byte, still test the first   byte
  if (st == 1) {
    if(PREAMBLE1 != data) st--;
  } else if (st ==   3) { // CLASS byte, not used, assume it is CLASS_NAV
    _ck_b = _ck_a = data;   // reset the checksum accumulators
  } else if (st > 3 && st < 8) {
    _ck_b   += (_ck_a += data);  // checksum byte
    if (st == 4) {
      _msg_id = data;
     } else if (st == 5) {
      _payload_length = data; // payload length low   byte
    } else if (st == 6) {
      _payload_length += (uint16_t)(data<<8);
       if (_payload_length > 512) st = 0;
      _payload_counter = 0;  // prepare   to receive payload
    } else {
      if (_payload_counter+1 < _payload_length)   st--; // stay in the same state while data inside the frame
      if (_payload_counter   < sizeof(_buffer)) _buffer.bytes[_payload_counter] = data;  
      _payload_counter++;
     }
  } else if (st == 8) {
    if (_ck_a != data) st = 0;  // bad checksum
   } else if (st == 9) {
    st = 0;
    if (_ck_b == data) { // good checksum
       if (_msg_id == MSG_POSLLH) {
        if(f.GPS_FIX) {
          GPS_coord[LON]   = _buffer.posllh.longitude;
          GPS_coord[LAT] = _buffer.posllh.latitude;
           GPS_altitude   = _buffer.posllh.altitude_msl / 1000; //alt in m
          //GPS_time        = _buffer.posllh.time; //not used for the moment
        }
        ret=   true;        // POSLLH message received, allow blink GUI icon and LED, frame available   for nav computation
      } else if (_msg_id ==  MSG_SOL) {
        f.GPS_FIX   = 0;
        if((_buffer.solution.fix_status & NAV_STATUS_FIX_VALID) && (_buffer.solution.fix_type   == FIX_3D || _buffer.solution.fix_type == FIX_2D)) f.GPS_FIX = 1;
        GPS_numSat   = _buffer.solution.satellites;
      } else if (_msg_id ==  MSG_VELNED) {
         GPS_speed         = _buffer.velned.speed_2d;  // cm/s
        GPS_ground_course   = (uint16_t)(_buffer.velned.heading_2d / 10000);  // Heading 2D deg * 100000 rescaled   to deg * 10 //not used for the moment
      }
    }
  }
  _step = st;
   return ret;
}
#endif //UBLOX



/**************************************************************************************/
/***********************        MTK                           **************************/
/**************************************************************************************/
#if   defined(MTK_BINARY16) || defined(MTK_BINARY19)

#define MTK_SET_BINARY          PSTR("$PGCMD,16,0,0,0,0,0*6A\\
")
#define   MTK_SET_NMEA            PSTR("$PGCMD,16,1,1,1,1,1*6B\\
")
#define MTK_SET_NMEA_SENTENCES   PSTR("$PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*28\\
")
#define MTK_OUTPUT_4HZ           PSTR("$PMTK220,250*29\\
")
#define MTK_OUTPUT_5HZ          PSTR("$PMTK220,200*2C\\
")
#define   MTK_OUTPUT_10HZ         PSTR("$PMTK220,100*2F\\
")
#define MTK_NAVTHRES_OFF         PSTR("$PMTK397,0*23\\
") // Set Nav Threshold (the minimum speed the   GPS must be moving to update the position) to 0 m/s  
#define SBAS_ON                 PSTR("$PMTK313,1*2E\\
")
#define   WAAS_ON                 PSTR("$PMTK301,2*2E\\
")
#define SBAS_TEST_MODE           PSTR("$PMTK319,0*25\\
")  //Enable test use of sbas satelite in test   mode (usually PRN124 is in test mode)

struct diyd_mtk_msg {
  int32_t   latitude;
  int32_t  longitude;
  int32_t  altitude;
  int32_t  ground_speed;
   int32_t  ground_course;
  uint8_t  satellites;
  uint8_t  fix_type;
   uint32_t utc_date;
  uint32_t utc_time;
  uint16_t hdop;
};

//   #pragma pack(pop)
enum diyd_mtk_fix_type {
  FIX_NONE = 1,
  FIX_2D = 2,
   FIX_3D = 3,
  FIX_2D_SBAS = 6,
  FIX_3D_SBAS = 7 
};

#if defined(MTK_BINARY16)
enum   diyd_mtk_protocol_bytes {
  PREAMBLE1 = 0xd0,
  PREAMBLE2 = 0xdd,
};
#endif

#if   defined(MTK_BINARY19)
enum diyd_mtk_protocol_bytes {
  PREAMBLE1 = 0xd1,
   PREAMBLE2 = 0xdd,
};
#endif

// Packet checksum accumulators
uint8_t   _ck_a;
uint8_t  _ck_b;

// State machine state
uint8_t  _step;
uint8_t   _payload_counter;

// Time from UNIX Epoch offset
long  _time_offset;
bool   _offset_calculated;

// Receive buffer
union {
  diyd_mtk_msg  msg;
   uint8_t       bytes[];
} _buffer;

inline long _swapl(const void *bytes)   {
  const uint8_t *b = (const uint8_t *)bytes;
  union {
    long    v;
     uint8_t b[4];
  } u;

  u.b[0] = b[3];
  u.b[1] = b[2];
  u.b[2]   = b[1];
  u.b[3] = b[0];

  return(u.v);
}

uint32_t init_speed[5]   = {9600,19200,38400,57600,115200};

void SerialGpsPrint(const char PROGMEM   * str) {
  char b;
  while(str && (b = pgm_read_byte(str++))) {
    SerialWrite(GPS_SERIAL,   b);     
  }
}

void GPS_SerialInit(void) {
  SerialOpen(GPS_SERIAL,GPS_BAUD);
   delay(1000);
  #if defined(INIT_MTK_GPS)                              // MTK   GPS setup
    for(uint8_t i=0;i<5;i++){
      SerialOpen(GPS_SERIAL,init_speed[i]);                 // switch UART speed for sending SET BAUDRATE command
      #if   (GPS_BAUD==19200)
        SerialGpsPrint(PSTR("$PMTK251,19200*22\\
"));      // 19200 baud - minimal speed for 5Hz update rate
      #endif  
      #if   (GPS_BAUD==38400)
        SerialGpsPrint(PSTR("$PMTK251,38400*27\\
"));      // 38400 baud
      #endif  
      #if (GPS_BAUD==57600)
        SerialGpsPrint(PSTR("$PMTK251,57600*2C\\
"));      // 57600 baud
      #endif  
      #if (GPS_BAUD==115200)
        SerialGpsPrint(PSTR("$PMTK251,115200*1F\\
"));     // 115200 baud
      #endif  
      while(!SerialTXfree(GPS_SERIAL)) delay(80);
     }
    // at this point we have GPS working at selected (via #define GPS_BAUD)   baudrate
    // So now we have to set the desired mode and update rate (which   depends on the NMEA or MTK_BINARYxx settings)
    SerialOpen(GPS_SERIAL,GPS_BAUD);

     SerialGpsPrint(MTK_NAVTHRES_OFF);
      while(!SerialTXfree(GPS_SERIAL))   delay(80);
    SerialGpsPrint(SBAS_ON);
      while(!SerialTXfree(GPS_SERIAL))   delay(80);
    SerialGpsPrint(WAAS_ON);
      while(!SerialTXfree(GPS_SERIAL))   delay(80);
    SerialGpsPrint(SBAS_TEST_MODE);
      while(!SerialTXfree(GPS_SERIAL))   delay(80);
    SerialGpsPrint(MTK_OUTPUT_5HZ);           // 5 Hz update rate

     #if defined(NMEA)
      SerialGpsPrint(MTK_SET_NMEA_SENTENCES); // only GGA   and RMC sentence
    #endif     
    #if defined(MTK_BINARY19) || defined(MTK_BINARY16)
       SerialGpsPrint(MTK_SET_BINARY);
    #endif
  #endif  // init_mtk_gps
}

bool   GPS_newFrame(uint8_t data) {
  bool parsed = false;

  restart:
  switch(_step)   {
    // Message preamble, class, ID detection
    //
    // If we fail   to match any of the expected bytes, we
    // reset the state machine and re-consider   the failed
    // byte as the first byte of the preamble.  This
    // improves   our chances of recovering from a mismatch
    // and makes it less likely that   we will be fooled by
    // the preamble appearing as data in some other message.
     //
    case 0:
      if(PREAMBLE1 == data)
        _step++;
      break;
     case 1:
      if (PREAMBLE2 == data) {
        _step++;
        break;
       }
      _step = 0;
      goto restart;
    case 2:
      if (sizeof(_buffer)   == data) {
        _step++;
        _ck_b = _ck_a = data;                  //   reset the checksum accumulators
        _payload_counter = 0;
      } else   {
        _step = 0;                             // reset and wait for a message   of the right class
        goto restart;
      }
      break;
      //   Receive message data
    case 3:
      _buffer.bytes[_payload_counter++] =   data;
      _ck_b += (_ck_a += data);
      if (_payload_counter == sizeof(_buffer))
         _step++;
      break;
      // Checksum and message processing
     case 4:
      _step++;
      if (_ck_a != data)
        _step = 0;
       break;
    case 5:
      _step = 0;
      if (_ck_b != data)
         break;
      f.GPS_FIX                   = ((_buffer.msg.fix_type ==   FIX_3D) || (_buffer.msg.fix_type == FIX_3D_SBAS));
      #if defined(MTK_BINARY16)
       GPS_coord[LAT]              = _buffer.msg.latitude * 10;    // XXX doc says   *10e7 but device says otherwise
      GPS_coord[LON]              = _buffer.msg.longitude   * 10;   // XXX doc says *10e7 but device says otherwise
      #endif
      #if   defined(MTK_BINARY19)
      GPS_coord[LAT]              = _buffer.msg.latitude;          // With 1.9 now we have real 10e7 precision
      GPS_coord[LON]              =   _buffer.msg.longitude;
      #endif
      GPS_altitude                = _buffer.msg.altitude   /100;    // altitude in meter
      GPS_speed                   = _buffer.msg.ground_speed;      // in m/s * 100 == in cm/s
      GPS_ground_course           = _buffer.msg.ground_course/100;   //in degrees
      GPS_numSat                  = _buffer.msg.satellites;
       //GPS_time                    = _buffer.msg.utc_time;
      //GPS_hdop                   = _buffer.msg.hdop;
      parsed = true;
  }
  return   parsed;
}
#endif //MTK

#endif //GPS SERIAL




/**************************************************************************************/
/***************                        I2C GPS                     ********************/
/**************************************************************************************/
#if   defined(I2C_GPS)
#define I2C_GPS_ADDRESS               0x20 //7 bits       

#define   I2C_GPS_STATUS_00             00    //(Read only)
  #define I2C_GPS_STATUS_NEW_DATA        0x01  // New data is available (after every GGA frame)
  #define I2C_GPS_STATUS_2DFIX           0x02  // 2dfix achieved
  #define I2C_GPS_STATUS_3DFIX          0x04   // 3dfix achieved
  #define I2C_GPS_STATUS_NUMSATS        0xF0  // Number of   sats in view
#define I2C_GPS_LOCATION              07    // current location   8 byte (lat, lon) int32_t
#define I2C_GPS_GROUND_SPEED          31    // GPS   ground speed in m/s*100 (uint16_t)      (Read Only)
#define I2C_GPS_ALTITUDE               33    // GPS altitude in meters (uint16_t)           (Read Only)
#define   I2C_GPS_GROUND_COURSE         35    // GPS ground course (uint16_t)
#define I2C_GPS_TIME                   39    // UTC Time from GPS in hhmmss.sss * 100 (uint32_t)(unneccesary   precision) (Read Only)
#define I2C_GPS_SONAR_ALT             239   // Sonar Altitude

uint8_t   GPS_NewData(void) {
  uint8_t i2c_gps_status;
  
  i2c_gps_status = i2c_readReg(I2C_GPS_ADDRESS,I2C_GPS_STATUS_00);                  //Get status register 
  
  #if defined(I2C_GPS_SONAR)
   i2c_read_reg_to_buf(I2C_GPS_ADDRESS, I2C_GPS_SONAR_ALT, (uint8_t*)&sonarAlt,2);
   #endif
  
  f.GPS_FIX = 0;	
  if (i2c_gps_status & I2C_GPS_STATUS_3DFIX)   {                                     //Check is we have a good 3d fix (numsats>5)
     f.GPS_FIX = 1;
    if (i2c_gps_status & I2C_GPS_STATUS_NEW_DATA) {                                //Check   about new data
      GPS_Frame = 1;
      if (GPS_update == 1) GPS_update   = 0; else GPS_update = 1; //Blink GPS update
      GPS_numSat = i2c_gps_status   >>4; 
      i2c_read_reg_to_buf(I2C_GPS_ADDRESS, I2C_GPS_LOCATION,     (uint8_t*)&GPS_coord[LAT],4);
       i2c_read_reg_to_buf(I2C_GPS_ADDRESS, I2C_GPS_LOCATION+4,   (uint8_t*)&GPS_coord[LON],4);
       // note: the following vars are currently not used in nav code -- avoid retrieving   it to save time
      //i2c_read_reg_to_buf(I2C_GPS_ADDRESS, I2C_GPS_GROUND_SPEED,   (uint8_t*)&GPS_speed,2);
      //i2c_read_reg_to_buf(I2C_GPS_ADDRESS, I2C_GPS_ALTITUDE,      (uint8_t*)&GPS_altitude,2);
      //i2c_read_reg_to_buf(I2C_GPS_ADDRESS,   I2C_GPS_GROUND_COURSE,(uint8_t*)&GPS_ground_course,2);
      return 1;
    }
   }
  return 0;
}
#endif //I2C_GPS



#endif // GPS Defined

MultiWii.ino

#include "Arduino.h"
#include "config.h"
#include "def.h"
#include  "types.h"
#include "GPS.h"
#include "Serial.h"
#include "Sensors.h"
#include  "MultiWii.h"
#include "EEPROM.h"
#include <math.h>

#if GPS

//Function  prototypes for other GPS functions
//These perhaps could go to the gps.h file,  however these are local to the gps.cpp  
static void GPS_bearing(int32_t* lat1,  int32_t* lon1, int32_t* lat2, int32_t* lon2, int32_t* bearing);
static void GPS_distance_cm(int32_t*  lat1, int32_t* lon1, int32_t* lat2, int32_t* lon2,uint32_t* dist);
static void  GPS_calc_velocity(void);
static void GPS_calc_location_error( int32_t* target_lat,  int32_t* target_lng, int32_t* gps_lat, int32_t* gps_lng );
static void GPS_calc_poshold(void);
static  uint16_t GPS_calc_desired_speed(uint16_t max_speed, bool _slow);
static void  GPS_calc_nav_rate(uint16_t max_speed);
int32_t wrap_18000(int32_t ang);
static  bool check_missed_wp(void);
void GPS_calc_longitude_scaling(int32_t lat);
static  void GPS_update_crosstrack(void);
int32_t wrap_36000(int32_t ang);


//  Leadig filter - TODO: rewrite to normal C instead of C++

// Set up gps lag
#if  defined(UBLOX) || defined (MTK_BINARY19)
#define GPS_LAG 0.5f                          //UBLOX  GPS has a smaller lag than MTK and other
#else
#define GPS_LAG 1.0f                          //We  assumes that MTK GPS has a 1 sec lag
#endif  

static int32_t  GPS_coord_lead[2];              // Lead filtered gps coordinates

class LeadFilter {
public:
    LeadFilter() :
        _last_velocity(0) {
    }

    // setup min  and max radio values in CLI
    int32_t         get_position(int32_t pos, int16_t  vel, float lag_in_seconds = 1.0);
    void            clear() { _last_velocity  = 0; }

private:
    int16_t         _last_velocity;

};

int32_t  LeadFilter::get_position(int32_t pos, int16_t vel, float lag_in_seconds)
{
    int16_t accel_contribution = (vel - _last_velocity) * lag_in_seconds * lag_in_seconds;
    int16_t vel_contribution = vel * lag_in_seconds;

    // store velocity  for next iteration
    _last_velocity = vel;

    return pos + vel_contribution  + accel_contribution;
}


LeadFilter xLeadFilter;      // Long GPS lag  filter 
LeadFilter yLeadFilter;      // Lat  GPS lag filter 

typedef struct  PID_PARAM_ {
  float kP;
  float kI;
  float kD;
  float Imax;
  }  PID_PARAM;
  
PID_PARAM posholdPID_PARAM;
PID_PARAM poshold_ratePID_PARAM;
PID_PARAM  navPID_PARAM;

typedef struct PID_ {
  float   integrator; // integrator  value
  int32_t last_input; // last input for derivative
  float   lastderivative;  // last derivative for low-pass filter
  float   output;
  float   derivative;
}  PID;
PID posholdPID[2];
PID poshold_ratePID[2];
PID navPID[2];

int32_t  get_P(int32_t error, struct PID_PARAM_* pid) {
  return (float)error * pid->kP;
}

int32_t  get_I(int32_t error, float* dt, struct PID_* pid, struct PID_PARAM_* pid_param)  {
  pid->integrator += ((float)error * pid_param->kI) * *dt;
  pid->integrator  = constrain(pid->integrator,-pid_param->Imax,pid_param->Imax);
  return pid->integrator;
}
  
int32_t get_D(int32_t input, float* dt, struct PID_* pid, struct PID_PARAM_*  pid_param) { // dt in milliseconds
  pid->derivative = (input - pid->last_input)  / *dt;

  /// Low pass filter cut frequency for derivative calculation.
  float filter = 7.9577e-3; // Set to  "1 / ( 2 * PI * f_cut )";
  // Examples  for _filter:
  // f_cut = 10 Hz -> _filter = 15.9155e-3
  // f_cut = 15 Hz  -> _filter = 10.6103e-3
  // f_cut = 20 Hz -> _filter =  7.9577e-3
  // f_cut  = 25 Hz -> _filter =  6.3662e-3
  // f_cut = 30 Hz -> _filter =  5.3052e-3

  // discrete low pass filter, cuts out the
  // high frequency noise that can  drive the controller crazy
  pid->derivative = pid->lastderivative + (*dt / (  filter + *dt)) * (pid->derivative - pid->lastderivative);
  // update state
  pid->last_input = input;
  pid->lastderivative    = pid->derivative;
  //  add in derivative component
  return pid_param->kD * pid->derivative;
}

void  reset_PID(struct PID_* pid) {
  pid->integrator = 0;
  pid->last_input = 0;
  pid->lastderivative = 0;
}

#define _X 1
#define _Y 0

#define  RADX100                    0.000174532925  

uint8_t land_detect;                 //Detect  land (extern)
static uint32_t land_settle_timer;
uint8_t GPS_Frame;            //  a valid GPS_Frame was detected, and data is ready for nav computation

static  float  dTnav;            // Delta Time in milliseconds for navigation computations,  updated with every good GPS read
static int16_t actual_speed[2] = {0,0};
static  float GPS_scaleLonDown; // this is used to offset the shrinking longitude as we  go towards the poles

// The difference between the desired rate of travel  and the actual rate of travel
// updated after GPS read - 5-10hz
static int16_t  rate_error[2];
static int32_t error[2];

static int32_t GPS_WP[2];   //Currently  used WP
static int32_t GPS_FROM[2]; //the pervious waypoint for precise track  following
int32_t target_bearing;     // This is the angle from the copter to  the "next_WP" location in degrees * 100
static int32_t original_target_bearing;  // deg * 100, The original angle to the next_WP when the next_WP was set, Also  used to check when we pass a WP
static int16_t crosstrack_error;     // The amount  of angle correction applied to target_bearing to bring the copter back on its optimum  path
uint32_t wp_distance;                // distance between plane and next_WP  in cm
static uint16_t waypoint_speed_gov;  // used for slow speed wind up when  start navigation;


////////////////////////////////////////////////////////////////////////////////////
//  moving average filter variables
//

#define GPS_FILTER_VECTOR_LENGTH 5

static  uint8_t GPS_filter_index = 0;
static int32_t GPS_filter[2][GPS_FILTER_VECTOR_LENGTH];
static  int32_t GPS_filter_sum[2];
static int32_t GPS_read[2];
static int32_t GPS_filtered[2];
static  int32_t GPS_degree[2];    //the lat lon degree without any decimals (lat/10 000  000)
static uint16_t fraction3[2];

static int16_t nav_takeoff_bearing;  // saves the bearing at takeof (1deg = 1) used to rotate to takeoff direction  when arrives at home



//Main navigation processor and state engine
//  TODO: add proceesing states to ease processing burden 
uint8_t GPS_Compute(void)  {
  unsigned char axis;
  uint32_t dist;        //temp variable to store dist  to copter
  int32_t  dir;         //temp variable to store dir to copter
  static uint32_t nav_loopTimer;

  //check that we have a valid frame, if  not then return immediatly
  if (GPS_Frame == 0) return 0; else GPS_Frame = 0;

  //check home position and set it if it was not set
  if (f.GPS_FIX && GPS_numSat  >= 5) {
    #if !defined(DONT_RESET_HOME_AT_ARM)
       if (!f.ARMED) {f.GPS_FIX_HOME  = 0;}
    #endif
    if (!f.GPS_FIX_HOME && f.ARMED) {
      GPS_reset_home_position();
    }
    //Apply moving average filter to GPS data
    if (GPS_conf.filtering)  {
      GPS_filter_index = (GPS_filter_index+1) % GPS_FILTER_VECTOR_LENGTH;
      for (axis = 0; axis< 2; axis++) {
        GPS_read[axis] = GPS_coord[axis];  //latest unfiltered data is in GPS_latitude and GPS_longitude
        GPS_degree[axis]  = GPS_read[axis] / 10000000;  // get the degree to assure the sum fits to the int32_t

        // How close we are to a degree line ? its the first three digits from the  fractions of degree
        // later we use it to Check if we are close to a  degree line, if yes, disable averaging,
        fraction3[axis] = (GPS_read[axis]-  GPS_degree[axis]*10000000) / 10000;

        GPS_filter_sum[axis] -= GPS_filter[axis][GPS_filter_index];
        GPS_filter[axis][GPS_filter_index] = GPS_read[axis] - (GPS_degree[axis]*10000000);  
        GPS_filter_sum[axis] += GPS_filter[axis][GPS_filter_index];
        GPS_filtered[axis]  = GPS_filter_sum[axis] / GPS_FILTER_VECTOR_LENGTH + (GPS_degree[axis]*10000000);
        if ( NAV_state == NAV_STATE_HOLD_INFINIT || NAV_state == NAV_STATE_HOLD_TIMED)  {      //we use gps averaging only in poshold mode...
          if ( fraction3[axis]>1  && fraction3[axis]<999 ) GPS_coord[axis] = GPS_filtered[axis];
        }
      }
    }

    //dTnav calculation
    //Time for calculating x,y  speed and navigation pids
    dTnav = (float)(millis() - nav_loopTimer)/ 1000.0;
    nav_loopTimer = millis();

    // prevent runup from bad GPS
    dTnav  = min(dTnav, 1.0);  

    //calculate distance and bearings for gui and other  stuff continously - From home to copter
    GPS_bearing(&GPS_coord[LAT],&GPS_coord[LON],&GPS_home[LAT],&GPS_home[LON],&dir);
    GPS_distance_cm(&GPS_coord[LAT],&GPS_coord[LON],&GPS_home[LAT],&GPS_home[LON],&dist);
    GPS_distanceToHome = dist/100;
    GPS_directionToHome = dir/100;

    if (!f.GPS_FIX_HOME) {     //If we don't have home set, do not display anything
      GPS_distanceToHome = 0;
      GPS_directionToHome = 0;
    }

    //Check fence setting and execute RTH if neccessary
    //TODO: autolanding
    if ((GPS_conf.fence > 0) && (GPS_conf.fence < GPS_distanceToHome) && (f.GPS_mode  != GPS_MODE_RTH) ) {
      init_RTH();
    }

    //calculate the current  velocity based on gps coordinates continously to get a valid speed at the moment  when we start navigating
    GPS_calc_velocity();        

    //Navigation  state engine
    if (f.GPS_mode != GPS_MODE_NONE) {   //ok we are navigating  ###0002 
      //do gps nav calculations here, these are common for nav and poshold  
      GPS_bearing(&GPS_coord[LAT],&GPS_coord[LON],&GPS_WP[LAT],&GPS_WP[LON],&target_bearing);
      if (GPS_conf.lead_filter) {
        GPS_distance_cm(&GPS_coord_lead[LAT],&GPS_coord_lead[LON],&GPS_WP[LAT],&GPS_WP[LON],&wp_distance);
        GPS_calc_location_error(&GPS_WP[LAT],&GPS_WP[LON],&GPS_coord_lead[LAT],&GPS_coord_lead[LON]);
      } else {
        GPS_distance_cm(&GPS_coord[LAT],&GPS_coord[LON],&GPS_WP[LAT],&GPS_WP[LON],&wp_distance);
        GPS_calc_location_error(&GPS_WP[LAT],&GPS_WP[LON],&GPS_coord[LAT],&GPS_coord[LON]);
      }

      // Adjust altitude 
      // if we are holding position  and reached target altitude, then ignore altitude nav, and let the user trim alt
      if ( !((NAV_state == NAV_STATE_HOLD_INFINIT) && (alt_change_flag == REACHED_ALT)))  {
        if (!f.LAND_IN_PROGRESS) {
          alt_to_hold = get_new_altitude();
          AltHold = alt_to_hold;
        }
      }

      int16_t speed  = 0;                   //Desired navigation speed

      switch(NAV_state)                    //Navigation state machine
        {
        case NAV_STATE_NONE:               //Just for clarity, do nothing when nav_state is none
          break;

        case NAV_STATE_LAND_START:
          GPS_calc_poshold();              //Land  in position hold
          land_settle_timer = millis();
          NAV_state  = NAV_STATE_LAND_SETTLE;
          break;

        case NAV_STATE_LAND_SETTLE:
          GPS_calc_poshold();
          if (millis()-land_settle_timer > 5000)
            NAV_state = NAV_STATE_LAND_START_DESCENT;
          break;

        case NAV_STATE_LAND_START_DESCENT:
          GPS_calc_poshold();                //Land  in position hold
          f.THROTTLE_IGNORED = 1;            //Ignore Throtte  stick input
          f.GPS_BARO_MODE    = 1;            //Take control of BARO  mode
          land_detect = 0;                   //Reset land detector
          f.LAND_COMPLETED  = 0;
          f.LAND_IN_PROGRESS = 1;            // Flag land process
          NAV_state  = NAV_STATE_LAND_IN_PROGRESS;
          break;

        case NAV_STATE_LAND_IN_PROGRESS:
          GPS_calc_poshold();
          check_land();  //Call land detector
          if (f.LAND_COMPLETED) {
            nav_timer_stop = millis() + 5000;
            NAV_state = NAV_STATE_LANDED;
          }
          break;

        case NAV_STATE_LANDED:
          // Disarm if THROTTLE stick is at minimum  or 5sec past after land detected
          if (rcData[THROTTLE]<MINCHECK || nav_timer_stop  <= millis()) { //Throttle at minimum or 5sec passed.
            go_disarm();
            f.OK_TO_ARM = 0;                //Prevent rearming
            NAV_state  = NAV_STATE_NONE;     //Disable position holding.... prevent flippover
            f.GPS_BARO_MODE  = 0;
            f.LAND_COMPLETED = 0;
            f.LAND_IN_PROGRESS = 0;
            land_detect = 0;
            f.THROTTLE_IGNORED = 0;
            GPS_reset_nav();
          }
          break;

        case NAV_STATE_HOLD_INFINIT:        //Constant  position hold, no timer. Only an rcOption change can exit from this
          GPS_calc_poshold();
          break;

        case NAV_STATE_HOLD_TIMED:
          if (nav_timer_stop  == 0) {                         //We are start a timed poshold
            nav_timer_stop  = millis() + 1000*nav_hold_time;  //Set when we will continue
          } else  if (nav_timer_stop <= millis()) {           //did we reach our time limit ?
            if (mission_step.flag != MISSION_FLAG_END) {
              NAV_state  = NAV_STATE_PROCESS_NEXT;            //if yes then process next mission step
            }
            NAV_error = NAV_ERROR_TIMEWAIT;
          }
          GPS_calc_poshold();                                //BTW hold position  till next command
          break;

        case NAV_STATE_RTH_START:
          if ((alt_change_flag == REACHED_ALT) || (!GPS_conf.wait_for_rth_alt))  {             //Wait until we reach RTH altitude
            GPS_set_next_wp(&GPS_home[LAT],&GPS_home[LON],  &GPS_coord[LAT], &GPS_coord[LON]); //If we reached then change mode and start RTH
            NAV_state = NAV_STATE_RTH_ENROUTE;
            NAV_error = NAV_ERROR_NONE;
          } else {
            GPS_calc_poshold();                                                               //hold  position till we reach RTH alt
            NAV_error = NAV_ERROR_WAIT_FOR_RTH_ALT;
          }
          break;

        case NAV_STATE_RTH_ENROUTE:                                                  //Doing  RTH navigation
          speed = GPS_calc_desired_speed(GPS_conf.nav_speed_max,  GPS_conf.slow_nav); 
          GPS_calc_nav_rate(speed);
          GPS_adjust_heading();
          if ((wp_distance <= GPS_conf.wp_radius) || check_missed_wp()) {            //if  yes switch to poshold mode
            if (mission_step.parameter1 == 0) NAV_state  = NAV_STATE_HOLD_INFINIT;
            else NAV_state = NAV_STATE_LAND_START;                                   // if parameter 1 in RTH step is non 0 then land  at home
            if (GPS_conf.nav_rth_takeoff_heading) { magHold = nav_takeoff_bearing;  }
          } 
          break;

        case NAV_STATE_WP_ENROUTE:
          speed = GPS_calc_desired_speed(GPS_conf.nav_speed_max, GPS_conf.slow_nav);  
          GPS_calc_nav_rate(speed);
          GPS_adjust_heading();

          if ((wp_distance <= GPS_conf.wp_radius) || check_missed_wp()) {               //This  decides what happen when we reached the WP coordinates 
            if (mission_step.action  == MISSION_LAND) {                                  //Autoland
              NAV_state  = NAV_STATE_LAND_START;                                         //Start landing
              set_new_altitude(alt.EstAlt);                                             //Stop  any altitude changes
            } else if (mission_step.flag == MISSION_FLAG_END)  {                         //If this was the last mission step (flag set by the mission  planner), then switch to poshold
              NAV_state = NAV_STATE_HOLD_INFINIT;
              NAV_error = NAV_ERROR_FINISH;
            } else if (mission_step.action  == MISSION_HOLD_UNLIM) {                     //If mission_step was POSHOLD_UNLIM  and we reached the position then switch to poshold unlimited
              NAV_state  = NAV_STATE_HOLD_INFINIT;
              NAV_error = NAV_ERROR_FINISH;
            }  else if (mission_step.action == MISSION_HOLD_TIME) {                      //If mission_step  was a timed poshold then initiate timed poshold
              nav_hold_time =  mission_step.parameter1;
              nav_timer_stop = 0;                                                       //This  indicates that we are starting a timed poshold
              NAV_state = NAV_STATE_HOLD_TIMED;
            } else {
              NAV_state = NAV_STATE_PROCESS_NEXT;                                       //Otherwise  process next step
            }
          }
          break;

        case  NAV_STATE_DO_JUMP:
          if (jump_times < 0) {                                  //Jump  unconditionally (supposed to be -1) -10 should not be here
            next_step  = mission_step.parameter1;
            NAV_state = NAV_STATE_PROCESS_NEXT;
          }
          if (jump_times == 0) {
            jump_times = -10;                                    //reset jump counter
            if (mission_step.flag  == MISSION_FLAG_END) {         //If this was the last mission step (flag set by  the mission planner), then switch to poshold
              NAV_state = NAV_STATE_HOLD_INFINIT;
              NAV_error = NAV_ERROR_FINISH;
            } else
              NAV_state  = NAV_STATE_PROCESS_NEXT;
          }

          if (jump_times > 0) {                                  //if zero not reached do a jump
            next_step  = mission_step.parameter1;
            NAV_state = NAV_STATE_PROCESS_NEXT;
            jump_times--;
          }
          break;

        case  NAV_STATE_PROCESS_NEXT:                             //Processing next mission step
          NAV_error = NAV_ERROR_NONE;
          if (!recallWP(next_step)) { 
            abort_mission(NAV_ERROR_WP_CRC);
          } else {
            switch(mission_step.action)
              {
              //Waypoiny and hold commands all starts with an  enroute status it includes the LAND command too
              case MISSION_WAYPOINT:
              case MISSION_HOLD_TIME:
              case MISSION_HOLD_UNLIM:
              case MISSION_LAND:
                set_new_altitude(mission_step.altitude);
                GPS_set_next_wp(&mission_step.pos[LAT], &mission_step.pos[LON],  &GPS_prev[LAT], &GPS_prev[LON]);
                if ((wp_distance/100) >= GPS_conf.safe_wp_distance)  abort_mission(NAV_ERROR_TOOFAR);
                else NAV_state = NAV_STATE_WP_ENROUTE;
                GPS_prev[LAT] = mission_step.pos[LAT];  //Save wp coordinates for  precise route calc
                GPS_prev[LON] = mission_step.pos[LON];
                break;
              case MISSION_RTH:
                f.GPS_head_set  = 0;
                if (GPS_conf.rth_altitude == 0 && mission_step.altitude  == 0) //if config and mission_step alt is zero 
                  set_new_altitude(alt.EstAlt);     // RTH returns at the actual altitude 
                else {
                  uint32_t  rth_alt;
                  if (mission_step.altitude == 0) rth_alt = GPS_conf.rth_altitude  * 100;   //altitude in mission step has priority
                  else rth_alt  = mission_step.altitude;

                  if (alt.EstAlt < rth_alt) set_new_altitude(rth_alt);                     //BUt only if we are below it.
                  else set_new_altitude(alt.EstAlt);
                }
                NAV_state = NAV_STATE_RTH_START;
                break;
              case MISSION_JUMP:
                if (jump_times == -10) jump_times  = mission_step.parameter2;
                if (mission_step.parameter1 > 0 &&  mission_step.parameter1 < mission_step.number)
                  NAV_state =  NAV_STATE_DO_JUMP;
                else //Error situation, invalid jump target
                  abort_mission(NAV_ERROR_INVALID_JUMP);
                break;
              case MISSION_SET_HEADING:
                GPS_poi[LAT] = 0; GPS_poi[LON]  = 0; // zeroing this out clears the possible pervious set_poi
                if  (mission_step.parameter1 < 0) f.GPS_head_set = 0;
                else {
                  f.GPS_head_set = 1;
                  GPS_directionToPoi =  mission_step.parameter1;
                } 
                break;
              case  MISSION_SET_POI:
                GPS_poi[LAT] = mission_step.pos[LAT];
                GPS_poi[LON]  = mission_step.pos[LON];
                f.GPS_head_set = 1;
                break;
              default:                                  //if we got an unknown action  code abort mission and hold position
                abort_mission(NAV_ERROR_INVALID_DATA);
                break;
              }
            next_step++; //Prepare  for the next step
          }
          break;
        } // switch end
    } //end of gps calcs ###0002 
  }
  return 1;
} // End of GPS_compute

//  Abort current mission with the given error code (switch to poshold_infinit)
void  abort_mission(unsigned char error_code) {
  GPS_set_next_wp(&GPS_coord[LAT],  &GPS_coord[LON],&GPS_coord[LAT], &GPS_coord[LON]);
  NAV_error = error_code;
  NAV_state = NAV_STATE_HOLD_INFINIT;
}

//Adjusting heading according  to settings - MAG mode must be enabled
void GPS_adjust_heading() {
  //TODO:  Add slow windup for large heading change
  //This controls the heading
  if  (f.GPS_head_set) { // We have seen a SET_POI or a SET_HEADING command
    if  (GPS_poi[LAT] == 0)
      magHold = wrap_18000((GPS_directionToPoi*100))/100;
    else {
      GPS_bearing(&GPS_coord[LAT],&GPS_coord[LON],&GPS_poi[LAT],&GPS_poi[LON],&GPS_directionToPoi);
      GPS_distance_cm(&GPS_coord[LAT],&GPS_coord[LON],&GPS_poi[LAT],&GPS_poi[LON],&wp_distance);
      magHold = GPS_directionToPoi /100;
    }
  } else {                                //  heading controlled by the standard defines
    if (GPS_conf.nav_controls_heading)  {
      if (GPS_conf.nav_tail_first) {
        magHold = wrap_18000(target_bearing-18000)/100;
      } else {
        magHold = wrap_18000(target_bearing)/100;
      }
    }
  }
}

#define LAND_DETECT_THRESHOLD 40      //Counts of land  situation
#define BAROPIDMIN           -180     //BaroPID reach this if we landed.....

//Check  if we landed or not
void check_land() {
  // detect whether we have landed  by watching for low climb rate and throttle control
  if ( (abs(alt.vario) <  20) && (BaroPID < BAROPIDMIN)) {
    if (!f.LAND_COMPLETED) {
      if( land_detect  < LAND_DETECT_THRESHOLD) {
        land_detect++;
      } else {
        f.LAND_COMPLETED  = 1;
        land_detect = 0;
      }
    }
  } else {
    // we've  detected movement up or down so reset land_detector
    land_detect = 0;
    if(f.LAND_COMPLETED) {
      f.LAND_COMPLETED = 0;
    }
  }
}

int32_t  get_altitude_error() {
  return alt_to_hold - alt.EstAlt;
}

void clear_new_altitude()  {
  alt_change_flag = REACHED_ALT;
}

void force_new_altitude(int32_t  _new_alt) {
  alt_to_hold     = _new_alt;
  target_altitude = _new_alt;
  alt_change_flag = REACHED_ALT;
}

void set_new_altitude(int32_t _new_alt)  {
  //Limit maximum altitude command
  if(_new_alt > GPS_conf.nav_max_altitude*100)  _new_alt = GPS_conf.nav_max_altitude * 100;
  if(_new_alt == alt.EstAlt){
    force_new_altitude(_new_alt);
    return;
  }
  // We start at the  current location altitude and gradually change alt
  alt_to_hold = alt.EstAlt;
  // for calculating the delta time
  alt_change_timer = millis();
  // save  the target altitude
  target_altitude = _new_alt;
  // reset our altitude  integrator
  alt_change = 0;
  // save the original altitude
  original_altitude  = alt.EstAlt;
  // to decide if we have reached the target altitude
  if(target_altitude  > original_altitude){
    // we are below, going up
    alt_change_flag =  ASCENDING;
  } else if(target_altitude < original_altitude){
    // we are  above, going down
    alt_change_flag = DESCENDING;
  } else {
    // No  Change
    alt_change_flag = REACHED_ALT;
  }
}

int32_t get_new_altitude()  {
  // returns a new altitude which feeded into the alt.hold controller
  if(alt_change_flag  == ASCENDING) {
    // we are below, going up
    if(alt.EstAlt >=  target_altitude)  alt_change_flag = REACHED_ALT; 
    // we shouldn't command past our target
    if(alt_to_hold >=  target_altitude) return target_altitude; 
  } else if  (alt_change_flag == DESCENDING) {
    // we are above, going down
    if(alt.EstAlt  <=  target_altitude) alt_change_flag = REACHED_ALT;
    // we shouldn't command  past our target
    if(alt_to_hold <=  target_altitude) return target_altitude;
  }
  // if we have reached our target altitude, return the target alt
  if(alt_change_flag  == REACHED_ALT) return target_altitude;

  int32_t diff  = abs(alt_to_hold  - target_altitude);
  // scale is how we generate a desired rate from the elapsed  time
  // a smaller scale means faster rates
  int8_t _scale = 4;

  if (alt_to_hold < target_altitude) {
    // we are below the target alt
    if(diff < 200) _scale = 4;
    else _scale = 3;
  } else {
    // we  are above the target, going down
    if(diff < 400) _scale = 5;  //Slow down  if only 4meters above
    if(diff < 100) _scale = 6;  //Slow down further if  within 1meter
  }

  // we use the elapsed time as our altitude offset
  // 1000 = 1 sec
  // 1000 >> 4 = 64cm/s descent by default
  int32_t change  = (millis() - alt_change_timer) >> _scale;

  if(alt_change_flag == ASCENDING){
    alt_change += change;
  } else {
     alt_change -= change;
  }
  // for generating delta time
  alt_change_timer = millis();

  return  original_altitude + alt_change;
}

////////////////////////////////////////////////////////////////////////////////////
//PID  based GPS navigation functions
//Author : EOSBandi
//Based on code and ideas  from the Arducopter team: Jason Short,Randy Mackay, Pat Hickey, Jose Julio, Jani  Hirvinen
//Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto  Navoni

//original constraint does not work with variables
int16_t constrain_int16(int16_t  amt, int16_t low, int16_t high) {
  return ((amt)<(low)?(low):((amt)>(high)?(high):(amt)));
}
////////////////////////////////////////////////////////////////////////////////////
//  this is used to offset the shrinking longitude as we go towards the poles
//  It's ok to calculate this once per waypoint setting, since it changes a little within  the reach of a multicopter
//
void GPS_calc_longitude_scaling(int32_t lat)  {
  GPS_scaleLonDown = cos(lat * 1.0e-7f * 0.01745329251f);
}

////////////////////////////////////////////////////////////////////////////////////
//  Sets the waypoint to navigate, reset neccessary variables and calculate initial  values
//
void GPS_set_next_wp(int32_t* lat_to, int32_t* lon_to, int32_t*  lat_from, int32_t* lon_from) {
  GPS_WP[LAT] = *lat_to;
  GPS_WP[LON] = *lon_to;

  GPS_FROM[LAT] = *lat_from;
  GPS_FROM[LON] = *lon_from;

  GPS_calc_longitude_scaling(*lat_to);

  GPS_bearing(&GPS_FROM[LAT],&GPS_FROM[LON],&GPS_WP[LAT],&GPS_WP[LON],&target_bearing);
  GPS_distance_cm(&GPS_FROM[LAT],&GPS_FROM[LON],&GPS_WP[LAT],&GPS_WP[LON],&wp_distance);
  GPS_calc_location_error(&GPS_WP[LAT],&GPS_WP[LON],&GPS_FROM[LAT],&GPS_FROM[LON]);
  waypoint_speed_gov = GPS_conf.nav_speed_min;
  original_target_bearing = target_bearing;

}

////////////////////////////////////////////////////////////////////////////////////
//  Check if we missed the destination somehow
//
static bool check_missed_wp(void)  {
  int32_t temp;
  temp = target_bearing - original_target_bearing;
  temp  = wrap_18000(temp);
  return (abs(temp) > 10000);   // we passed the waypoint  by 100 degrees
}

////////////////////////////////////////////////////////////////////////////////////
//  Get distance between two points in cm
// Get bearing from pos1 to pos2, returns  an 1deg = 100 precision

void GPS_bearing(int32_t* lat1, int32_t* lon1, int32_t*  lat2, int32_t* lon2, int32_t* bearing) {
  int32_t off_x = *lon2 - *lon1;
  int32_t off_y = (*lat2 - *lat1) / GPS_scaleLonDown;

  *bearing = 9000 +  atan2(-off_y, off_x) * 5729.57795f;      //Convert the output redians to 100xdeg
  if (*bearing < 0) *bearing += 36000;
}

void GPS_distance_cm(int32_t*  lat1, int32_t* lon1, int32_t* lat2, int32_t* lon2,uint32_t* dist) {
  float dLat  = (float)(*lat2 - *lat1);                                    // difference of latitude  in 1/10 000 000 degrees
  float dLon = (float)(*lon2 - *lon1) * GPS_scaleLonDown;  //x
  *dist = sqrt(sq(dLat) + sq(dLon)) * 1.11318845f;
}

//*******************************************************************************************************
//  calc_velocity_and_filtered_position - velocity in lon and lat directions calculated  from GPS position
//       and accelerometer data
// lon_speed expressed in  cm/s.  positive numbers mean moving east
// lat_speed expressed in cm/s.  positive  numbers when moving north
// Note: we use gps locations directly to calculate  velocity instead of asking gps for velocity because
//       this is more accurate  below 1.5m/s
// Note: even though the positions are projected using a lead filter,  the velocities are calculated
//       from the unaltered gps locations.  We  do not want noise from our lead filter affecting velocity
//*******************************************************************************************************
static  void GPS_calc_velocity(void){
  static int16_t speed_old[2] = {0,0};
  static  int32_t last[2] = {0,0};
  static uint8_t init = 0;

  if (init) {
    float tmp = 1.0/dTnav;
    actual_speed[_X] = (float)(GPS_coord[LON] - last[LON])  *  GPS_scaleLonDown * tmp;
    actual_speed[_Y] = (float)(GPS_coord[LAT]  - last[LAT])  * tmp;

    //TODO: Check unrealistic speed changes and signal navigation  about posibble gps signal degradation
    if (!GPS_conf.lead_filter) {
      actual_speed[_X]  = (actual_speed[_X] + speed_old[_X]) / 2;
      actual_speed[_Y] = (actual_speed[_Y]  + speed_old[_Y]) / 2;

      speed_old[_X] = actual_speed[_X];
      speed_old[_Y]  = actual_speed[_Y];
    }
  }
  init=1;

  last[LON] = GPS_coord[LON];
  last[LAT] = GPS_coord[LAT];

  if (GPS_conf.lead_filter) {
    GPS_coord_lead[LON]  = xLeadFilter.get_position(GPS_coord[LON], actual_speed[_X], GPS_LAG);
    GPS_coord_lead[LAT]  = yLeadFilter.get_position(GPS_coord[LAT], actual_speed[_Y], GPS_LAG);
  }
}

////////////////////////////////////////////////////////////////////////////////////
//  Calculate a location error between two gps coordinates
// Because we are using  lat and lon to do our distance errors here's a quick chart:
//   100  = 1m
//  1000  = 11m    = 36 feet
//  1800  = 19.80m = 60 feet
//  3000  = 33m
//  10000  = 111m
//
static void GPS_calc_location_error( int32_t* target_lat,  int32_t* target_lng, int32_t* gps_lat, int32_t* gps_lng ) {
  error[LON] = (float)(*target_lng  - *gps_lng) * GPS_scaleLonDown;  // X Error
  error[LAT] = *target_lat - *gps_lat;  // Y Error
}

////////////////////////////////////////////////////////////////////////////////////
//  Calculate nav_lat and nav_lon from the x and y error and the speed
//
// TODO:  check that the poshold target speed constraint can be increased for snappier poshold  lock
static void GPS_calc_poshold(void) {
  int32_t d;
  int32_t target_speed;
  uint8_t axis;
  
  for (axis=0;axis<2;axis++) {
    target_speed = get_P(error[axis],  &posholdPID_PARAM); // calculate desired speed from lat/lon error
    target_speed  = constrain(target_speed,-100,100);      // Constrain the target speed in poshold  mode to 1m/s it helps avoid runaways..
    rate_error[axis] = target_speed -  actual_speed[axis]; // calc the speed error

    nav[axis]      =
        get_P(rate_error[axis],                                               &poshold_ratePID_PARAM)
       +get_I(rate_error[axis]  + error[axis], &dTnav, &poshold_ratePID[axis], &poshold_ratePID_PARAM);

    d = get_D(error[axis],                    &dTnav, &poshold_ratePID[axis], &poshold_ratePID_PARAM);

    d = constrain(d, -2000, 2000);

    // get rid of noise
    if(abs(actual_speed[axis])  < 50) d = 0;

    nav[axis] +=d;
    // nav[axis]  = constrain(nav[axis],  -NAV_BANK_MAX, NAV_BANK_MAX);
    nav[axis]  = constrain_int16(nav[axis], -GPS_conf.nav_bank_max,  GPS_conf.nav_bank_max);
    navPID[axis].integrator = poshold_ratePID[axis].integrator;
  }
}

////////////////////////////////////////////////////////////////////////////////////
//  Calculate the desired nav_lat and nav_lon for distance flying such as RTH and WP
//
static  void GPS_calc_nav_rate( uint16_t max_speed) {
  float trig[2];
  int32_t target_speed[2];
  int32_t tilt;
  uint8_t axis;

  GPS_update_crosstrack();
  int16_t  cross_speed = crosstrack_error * (GPS_conf.crosstrack_gain / 100.0);  //check is  it ok ?
  cross_speed = constrain(cross_speed,-200,200);
  cross_speed = -cross_speed;

  float temp = (9000l - target_bearing) * RADX100;
  trig[_X] = cos(temp);
  trig[_Y] = sin(temp);

  target_speed[_X] = max_speed * trig[_X] - cross_speed  * trig[_Y];
  target_speed[_Y] = cross_speed * trig[_X] + max_speed * trig[_Y];

  for (axis=0;axis<2;axis++) {
    rate_error[axis] = target_speed[axis] - actual_speed[axis];
    rate_error[axis] = constrain(rate_error[axis],-1000,1000);
    nav[axis]      =
        get_P(rate_error[axis],                        &navPID_PARAM)
       +get_I(rate_error[axis], &dTnav, &navPID[axis], &navPID_PARAM)
       +get_D(rate_error[axis],  &dTnav, &navPID[axis], &navPID_PARAM);

    // nav[axis] = constrain(nav[axis],-NAV_BANK_MAX,NAV_BANK_MAX);
    nav[axis]  = constrain_int16(nav[axis], -GPS_conf.nav_bank_max, GPS_conf.nav_bank_max);
    poshold_ratePID[axis].integrator = navPID[axis].integrator;
  }
}

static  void GPS_update_crosstrack(void) {
  // Crosstrack Error
  // ----------------
  // If we are too far off or too close we don't do track following
  float temp  = (target_bearing - original_target_bearing) * RADX100;
  crosstrack_error =  sin(temp) * wp_distance; // Meters we are off track line
}

////////////////////////////////////////////////////////////////////////////////////
//  Determine desired speed when navigating towards a waypoint, also implement slow  
// speed rampup when starting a navigation
//
//      |< WP Radius
//      0  1   2   3   4   5   6   7   8m
//      ...|...|...|...|...|...|...|...|
//                100  |  200     300     400cm/s
//                 |                                        +|+
//                 |< we should slow to 1 m/s as we hit the target
//
static  uint16_t GPS_calc_desired_speed(uint16_t max_speed, bool _slow) {
  if(_slow){
    max_speed = min(max_speed, wp_distance / 2);
  } else {
    max_speed  = min(max_speed, wp_distance);
    max_speed = max(max_speed, GPS_conf.nav_speed_min);  // go at least nav_speed_min
  }
  // limit the ramp up of the speed
  // waypoint_speed_gov is reset to 0 at each new WP command
  if(max_speed >  waypoint_speed_gov){
    waypoint_speed_gov += (int)(100.0 * dTnav); // increase  at .5/ms
    max_speed = waypoint_speed_gov;
  }
  return max_speed;
}

////////////////////////////////////////////////////////////////////////////////////
//  Utilities
//

int32_t wrap_36000(int32_t ang) {
  if (ang > 36000) ang  -= 36000;
  if (ang < 0)     ang += 36000;
  return ang;
}


/*
  * EOS increased the precision here, even if we think that the gps is not precise  enough, with 10e5 precision it has 76cm resolution
 * with 10e7 it's around 1  cm now. Increasing it further is irrelevant, since even 1cm resolution is unrealistic,  however increased 
 * resolution also increased precision of nav calculations
*/

#define  DIGIT_TO_VAL(_x)        (_x - '0')
uint32_t GPS_coord_to_degrees(char* s) {
  char *p, *q;
  uint8_t deg = 0, min = 0;
  unsigned int frac_min = 0;
  uint8_t i;

  // scan for decimal point or end of field
  for (p = s;  isdigit(*p); p++) ;
  q = s;

  // convert degrees
  while ((p - q)  > 2) {
    if (deg)
      deg *= 10;
    deg += DIGIT_TO_VAL(*q++);
  }
  // convert minutes
  while (p > q) {
    if (min)
      min *=  10;
    min += DIGIT_TO_VAL(*q++);
  }
  // convert fractional minutes
  // expect up to four digits, result is in
  // ten-thousandths of a minute
  if (*p == '.') {
    q = p + 1;
    for (i = 0; i < 4; i++) {
      frac_min  *= 10;
      if (isdigit(*q))
        frac_min += *q++ - '0';
    }
  }
  return deg * 10000000UL + (min * 1000000UL + frac_min*100UL) / 6;
}

//  helper functions 
uint16_t grab_fields(char* src, uint8_t mult) {  // convert  string to uint16
  uint8_t i;
  uint16_t tmp = 0;

  for(i=0; src[i]!=0;  i++) {
    if(src[i] == '.') {
      i++;
      if(mult==0)   break;
      else  src[i+mult] = 0;
    }
    tmp *= 10;
    if(src[i] >='0' &&  src[i] <='9') tmp += src[i]-'0';
  }
  return tmp;
}

uint8_t hex_c(uint8_t  n) {    // convert '0'..'9','A'..'F' to 0..15
  n -= '0';
  if(n>9)  n -=  7;
  n &= 0x0F;
  return n;
} 

//************************************************************************
//  Common GPS functions 
//
void init_RTH() {
  f.GPS_mode = GPS_MODE_RTH;           // Set GPS_mode to RTH
  f.GPS_BARO_MODE = true;
  GPS_hold[LAT]  = GPS_coord[LAT];      //All RTH starts with a poshold 
  GPS_hold[LON] = GPS_coord[LON];      //This allows to raise to rth altitude
  GPS_set_next_wp(&GPS_hold[LAT],&GPS_hold[LON],  &GPS_hold[LAT], &GPS_hold[LON]);
  NAV_paused_at = 0;
  if (GPS_conf.rth_altitude  == 0) set_new_altitude(alt.EstAlt);     //Return at actual altitude
  else {                                                            // RTH altitude is defined,  but we use it only if we are below it
    if (alt.EstAlt < GPS_conf.rth_altitude  * 100) 
      set_new_altitude(GPS_conf.rth_altitude * 100);
    else set_new_altitude(alt.EstAlt);
  }
  f.GPS_head_set = 0;                                               //Allow  the RTH ti handle heading
  NAV_state = NAV_STATE_RTH_START;                                  //NAV  engine status is Starting RTH.
}

void GPS_reset_home_position(void) {
  if (f.GPS_FIX && GPS_numSat >= 5) {
    GPS_home[LAT] = GPS_coord[LAT];
    GPS_home[LON] = GPS_coord[LON];
    GPS_calc_longitude_scaling(GPS_coord[LAT]);    //need an initial value for distance and bearing calc
    nav_takeoff_bearing  = att.heading;             //save takeoff heading
    //TODO: Set ground altitude
    f.GPS_FIX_HOME = 1;
  }
}

//reset navigation (stop the navigation  processor, and clear nav)
void GPS_reset_nav(void) {
  uint8_t i;

  for(i=0;i<2;i++) {
    nav[i] = 0;
    reset_PID(&posholdPID[i]);
    reset_PID(&poshold_ratePID[i]);
    reset_PID(&navPID[i]);
    NAV_state = NAV_STATE_NONE;
    //invalidate  JUMP counter
    jump_times = -10;
    //reset next step counter
    next_step  = 1;
    //Clear poi
    GPS_poi[LAT] = 0; GPS_poi[LON] = 0;
    f.GPS_head_set  = 0;
  }
}

//Get the relevant P I D values and set the PID controllers  
void GPS_set_pids(void) {
  posholdPID_PARAM.kP   = (float)conf.pid[PIDPOS].P8/100.0;
  posholdPID_PARAM.kI   = (float)conf.pid[PIDPOS].I8/100.0;
  posholdPID_PARAM.Imax  = POSHOLD_RATE_IMAX * 100;

  poshold_ratePID_PARAM.kP   = (float)conf.pid[PIDPOSR].P8/10.0;
  poshold_ratePID_PARAM.kI   = (float)conf.pid[PIDPOSR].I8/100.0;
  poshold_ratePID_PARAM.kD   = (float)conf.pid[PIDPOSR].D8/1000.0;
  poshold_ratePID_PARAM.Imax = POSHOLD_RATE_IMAX  * 100;

  navPID_PARAM.kP   = (float)conf.pid[PIDNAVR].P8/10.0;
  navPID_PARAM.kI   = (float)conf.pid[PIDNAVR].I8/100.0;
  navPID_PARAM.kD   = (float)conf.pid[PIDNAVR].D8/1000.0;
  navPID_PARAM.Imax = POSHOLD_RATE_IMAX * 100;
  }
//It was moved here since  even i2cgps code needs it
int32_t wrap_18000(int32_t ang) {
  if (ang > 18000)  ang -= 36000;
  if (ang < -18000) ang += 36000;
  return ang;
}













/**************************************************************************************/
/**************************************************************************************/
/***********************       specific  GPS device section  **************************/
/**************************************************************************************/
/**************************************************************************************/

#if  defined(GPS_SERIAL)

/**************************************************************************************/
/***********************       NMEA                          **************************/
/**************************************************************************************/
#if  defined(NMEA)
/* This is a light implementation of a GPS frame decoding
   This  should work with most of modern GPS devices configured to output NMEA frames.
   It assumes there are some NMEA GGA frames to decode on the serial bus
   Here  we use only the following data :
     - latitude
     - longitude
     -  GPS fix is/is not ok
     - GPS num sat (4 is enough to be +/- reliable)
     - GPS altitude
     - GPS speed
*/
#define FRAME_GGA  1
#define  FRAME_RMC  2

void GPS_SerialInit(void) {
  SerialOpen(GPS_SERIAL,GPS_BAUD);
  delay(1000);
}

bool GPS_newFrame(uint8_t c) {
  uint8_t frameOK =  0;
  static uint8_t param = 0, offset = 0, parity = 0;
  static char string[15];
  static uint8_t checksum_param, frame = 0;

  if (c == '$') {
    param  = 0; offset = 0; parity = 0;
  } else if (c == ',' || c == '*') {
    string[offset]  = 0;
    if (param == 0) { //frame identification
      frame = 0;
      if  (string[0] == 'G' && string[1] == 'P' && string[2] == 'G' && string[3] == 'G' &&  string[4] == 'A') frame = FRAME_GGA;
      if (string[0] == 'G' && string[1]  == 'P' && string[2] == 'R' && string[3] == 'M' && string[4] == 'C') frame = FRAME_RMC;
    } else if (frame == FRAME_GGA) {
      if      (param == 2)                     {GPS_coord[LAT]  = GPS_coord_to_degrees(string);}
      else if (param == 3 && string[0] == 'S')  GPS_coord[LAT] = -GPS_coord[LAT];
      else if (param == 4)                     {GPS_coord[LON]  = GPS_coord_to_degrees(string);}
      else if (param == 5 && string[0] == 'W')  GPS_coord[LON] = -GPS_coord[LON];
      else if (param == 6)                     {f.GPS_FIX  = (string[0]  > '0');}
      else if (param == 7)                     {GPS_numSat  = grab_fields(string,0);}
      else if (param == 9)                     {GPS_altitude  = grab_fields(string,0);}  // altitude in meters added by Mis
    } else if (frame  == FRAME_RMC) {
      if      (param == 7)                     {GPS_speed = ((uint32_t)grab_fields(string,1)*5144L)/1000L;}  //gps speed in cm/s will be used for navigation
      else if (param == 8)                     {GPS_ground_course = grab_fields(string,1); }                 //ground  course deg*10 
    }
    param++; offset = 0;
    if (c == '*') checksum_param=1;
    else parity ^= c;
  } else if (c == '\r' || c == '\n') {
    if (checksum_param)  { //parity checksum
      uint8_t checksum = hex_c(string[0]);
      checksum  <<= 4;
      checksum += hex_c(string[1]);
      if (checksum == parity) frameOK  = 1;
    }
    checksum_param=0;
  } else {
     if (offset < 15) string[offset++]  = c;
     if (!checksum_param) parity ^= c;
  }
  return frameOK && (frame==FRAME_GGA);
}
#endif  //NMEA



/**************************************************************************************/
/***********************       UBLOX                         **************************/
/**************************************************************************************/
#if  defined(UBLOX)
const char UBLOX_INIT[] PROGMEM = {                                                  //  PROGMEM array must be outside any function !!!
  0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x05,0x00,0xFF,0x19,                            //disable all default NMEA messages
  0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x03,0x00,0xFD,0x15,
  0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x01,0x00,0xFB,0x11,
  0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x00,0x00,0xFA,0x0F,
  0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x02,0x00,0xFC,0x13,
  0xB5,0x62,0x06,0x01,0x03,0x00,0xF0,0x04,0x00,0xFE,0x17,
  0xB5,0x62,0x06,0x01,0x03,0x00,0x01,0x02,0x01,0x0E,0x47,                            //set  POSLLH MSG rate
  0xB5,0x62,0x06,0x01,0x03,0x00,0x01,0x03,0x01,0x0F,0x49,                            //set  STATUS MSG rate
  0xB5,0x62,0x06,0x01,0x03,0x00,0x01,0x06,0x01,0x12,0x4F,                            //set  SOL MSG rate
  0xB5,0x62,0x06,0x01,0x03,0x00,0x01,0x12,0x01,0x1E,0x67,                            //set  VELNED MSG rate
  0xB5,0x62,0x06,0x16,0x08,0x00,0x03,0x07,0x03,0x00,0x51,0x08,0x00,0x00,0x8A,0x41,   //set WAAS to EGNOS
  0xB5, 0x62, 0x06, 0x08, 0x06, 0x00, 0xC8, 0x00, 0x01,  0x00, 0x01, 0x00, 0xDE, 0x6A //set rate to 5Hz
};

struct ubx_header {
  uint8_t preamble1;
  uint8_t preamble2;
  uint8_t msg_class;
  uint8_t  msg_id;
  uint16_t length;
};
struct ubx_nav_posllh {
  uint32_t time;  // GPS msToW
  int32_t longitude;
  int32_t latitude;
  int32_t altitude_ellipsoid;
  int32_t altitude_msl;
  uint32_t horizontal_accuracy;
  uint32_t vertical_accuracy;
};
struct  ubx_nav_solution {
  uint32_t time;
  int32_t time_nsec;
  int16_t week;
  uint8_t fix_type;
  uint8_t fix_status;
  int32_t ecef_x;
  int32_t ecef_y;
  int32_t ecef_z;
  uint32_t position_accuracy_3d;
  int32_t ecef_x_velocity;
  int32_t ecef_y_velocity;
  int32_t ecef_z_velocity;
  uint32_t speed_accuracy;
  uint16_t position_DOP;
  uint8_t res;
  uint8_t satellites;
  uint32_t  res2;
};
struct ubx_nav_velned {
  uint32_t time;  // GPS msToW
  int32_t  ned_north;
  int32_t ned_east;
  int32_t ned_down;
  uint32_t speed_3d;
  uint32_t speed_2d;
  int32_t heading_2d;
  uint32_t speed_accuracy;
  uint32_t heading_accuracy;
};

enum ubs_protocol_bytes {
  PREAMBLE1  = 0xb5,
  PREAMBLE2 = 0x62,
  CLASS_NAV = 0x01,
  CLASS_ACK = 0x05,
  CLASS_CFG = 0x06,
  MSG_ACK_NACK = 0x00,
  MSG_ACK_ACK = 0x01,
  MSG_POSLLH  = 0x2,
  MSG_STATUS = 0x3,
  MSG_SOL = 0x6,
  MSG_VELNED = 0x12,
  MSG_CFG_PRT  = 0x00,
  MSG_CFG_RATE = 0x08,
  MSG_CFG_SET_RATE = 0x01,
  MSG_CFG_NAV_SETTINGS  = 0x24
};
enum ubs_nav_fix_type {
  FIX_NONE = 0,
  FIX_DEAD_RECKONING  = 1,
  FIX_2D = 2,
  FIX_3D = 3,
  FIX_GPS_DEAD_RECKONING = 4,
  FIX_TIME  = 5
};
enum ubx_nav_status_bits {
  NAV_STATUS_FIX_VALID = 1
};

//  Receive buffer
static union {
  ubx_nav_posllh posllh;
  ubx_nav_solution  solution;
  ubx_nav_velned velned;
  uint8_t bytes[];
 } _buffer;

uint32_t  init_speed[5] = {9600,19200,38400,57600,115200};

static void SerialGpsPrint(const  char PROGMEM * str) {
  char b;
  while(str && (b = pgm_read_byte(str++)))  {
    SerialWrite(GPS_SERIAL, b); 
    delay(5);
  }
}

void GPS_SerialInit(void)  {
  SerialOpen(GPS_SERIAL,GPS_BAUD);
  delay(1000);
  for(uint8_t i=0;i<5;i++){
    SerialOpen(GPS_SERIAL,init_speed[i]);          // switch UART speed for sending  SET BAUDRATE command (NMEA mode)
    #if (GPS_BAUD==19200)
      SerialGpsPrint(PSTR("$PUBX,41,1,0003,0001,19200,0*23\\
"));     // 19200 baud - minimal speed for 5Hz update rate
    #endif  
    #if  (GPS_BAUD==38400)
      SerialGpsPrint(PSTR("$PUBX,41,1,0003,0001,38400,0*26\\
"));     // 38400 baud
    #endif  
    #if (GPS_BAUD==57600)
      SerialGpsPrint(PSTR("$PUBX,41,1,0003,0001,57600,0*2D\\
"));     // 57600 baud
    #endif  
    #if (GPS_BAUD==115200)
      SerialGpsPrint(PSTR("$PUBX,41,1,0003,0001,115200,0*1E\\
"));    // 115200 baud
    #endif  
    while(!SerialTXfree(GPS_SERIAL)) delay(10);
  }
  delay(200);
  SerialOpen(GPS_SERIAL,GPS_BAUD);  
  for(uint8_t i=0;  i<sizeof(UBLOX_INIT); i++) {                        // send configuration data in  UBX protocol
    SerialWrite(GPS_SERIAL, pgm_read_byte(UBLOX_INIT+i));
    delay(5);  //simulating a 38400baud pace (or less), otherwise commands are not accepted by  the device.
  }
}

bool GPS_newFrame(uint8_t data){
  static uint8_t  _step = 0; // State machine state
  static uint8_t  _msg_id;
  static uint16_t  _payload_length;
  static uint16_t _payload_counter;
  static uint8_t  _ck_a;  // Packet checksum accumulators
  static uint8_t  _ck_b;

  uint8_t st  = _step+1;
  bool    ret = false;
  
  if (st == 2)
    if (PREAMBLE2  != data) st--; // in case of faillure of the 2nd header byte, still test the first  byte
  if (st == 1) {
    if(PREAMBLE1 != data) st--;
  } else if (st ==  3) { // CLASS byte, not used, assume it is CLASS_NAV
    _ck_b = _ck_a = data;  // reset the checksum accumulators
  } else if (st > 3 && st < 8) {
    _ck_b  += (_ck_a += data);  // checksum byte
    if (st == 4) {
      _msg_id = data;
    } else if (st == 5) {
      _payload_length = data; // payload length low  byte
    } else if (st == 6) {
      _payload_length += (uint16_t)(data<<8);
      if (_payload_length > 512) st = 0;
      _payload_counter = 0;  // prepare  to receive payload
    } else {
      if (_payload_counter+1 < _payload_length)  st--; // stay in the same state while data inside the frame
      if (_payload_counter  < sizeof(_buffer)) _buffer.bytes[_payload_counter] = data;  
      _payload_counter++;
    }
  } else if (st == 8) {
    if (_ck_a != data) st = 0;  // bad checksum
  } else if (st == 9) {
    st = 0;
    if (_ck_b == data) { // good checksum
      if (_msg_id == MSG_POSLLH) {
        if(f.GPS_FIX) {
          GPS_coord[LON]  = _buffer.posllh.longitude;
          GPS_coord[LAT] = _buffer.posllh.latitude;
          GPS_altitude   = _buffer.posllh.altitude_msl / 1000; //alt in m
          //GPS_time       = _buffer.posllh.time; //not used for the moment
        }
        ret=  true;        // POSLLH message received, allow blink GUI icon and LED, frame available  for nav computation
      } else if (_msg_id ==  MSG_SOL) {
        f.GPS_FIX  = 0;
        if((_buffer.solution.fix_status & NAV_STATUS_FIX_VALID) && (_buffer.solution.fix_type  == FIX_3D || _buffer.solution.fix_type == FIX_2D)) f.GPS_FIX = 1;
        GPS_numSat  = _buffer.solution.satellites;
      } else if (_msg_id ==  MSG_VELNED) {
        GPS_speed         = _buffer.velned.speed_2d;  // cm/s
        GPS_ground_course  = (uint16_t)(_buffer.velned.heading_2d / 10000);  // Heading 2D deg * 100000 rescaled  to deg * 10 //not used for the moment
      }
    }
  }
  _step = st;
  return ret;
}
#endif //UBLOX



/**************************************************************************************/
/***********************       MTK                           **************************/
/**************************************************************************************/
#if  defined(MTK_BINARY16) || defined(MTK_BINARY19)

#define MTK_SET_BINARY          PSTR("$PGCMD,16,0,0,0,0,0*6A\\
")
#define  MTK_SET_NMEA            PSTR("$PGCMD,16,1,1,1,1,1*6B\\
")
#define MTK_SET_NMEA_SENTENCES  PSTR("$PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*28\\
")
#define MTK_OUTPUT_4HZ          PSTR("$PMTK220,250*29\\
")
#define MTK_OUTPUT_5HZ          PSTR("$PMTK220,200*2C\\
")
#define  MTK_OUTPUT_10HZ         PSTR("$PMTK220,100*2F\\
")
#define MTK_NAVTHRES_OFF        PSTR("$PMTK397,0*23\\
") // Set Nav Threshold (the minimum speed the  GPS must be moving to update the position) to 0 m/s  
#define SBAS_ON                 PSTR("$PMTK313,1*2E\\
")
#define  WAAS_ON                 PSTR("$PMTK301,2*2E\\
")
#define SBAS_TEST_MODE          PSTR("$PMTK319,0*25\\
")  //Enable test use of sbas satelite in test  mode (usually PRN124 is in test mode)

struct diyd_mtk_msg {
  int32_t  latitude;
  int32_t  longitude;
  int32_t  altitude;
  int32_t  ground_speed;
  int32_t  ground_course;
  uint8_t  satellites;
  uint8_t  fix_type;
  uint32_t utc_date;
  uint32_t utc_time;
  uint16_t hdop;
};

//  #pragma pack(pop)
enum diyd_mtk_fix_type {
  FIX_NONE = 1,
  FIX_2D = 2,
  FIX_3D = 3,
  FIX_2D_SBAS = 6,
  FIX_3D_SBAS = 7 
};

#if defined(MTK_BINARY16)
enum  diyd_mtk_protocol_bytes {
  PREAMBLE1 = 0xd0,
  PREAMBLE2 = 0xdd,
};
#endif

#if  defined(MTK_BINARY19)
enum diyd_mtk_protocol_bytes {
  PREAMBLE1 = 0xd1,
  PREAMBLE2 = 0xdd,
};
#endif

// Packet checksum accumulators
uint8_t  _ck_a;
uint8_t  _ck_b;

// State machine state
uint8_t  _step;
uint8_t  _payload_counter;

// Time from UNIX Epoch offset
long  _time_offset;
bool  _offset_calculated;

// Receive buffer
union {
  diyd_mtk_msg  msg;
  uint8_t       bytes[];
} _buffer;

inline long _swapl(const void *bytes)  {
  const uint8_t *b = (const uint8_t *)bytes;
  union {
    long    v;
    uint8_t b[4];
  } u;

  u.b[0] = b[3];
  u.b[1] = b[2];
  u.b[2]  = b[1];
  u.b[3] = b[0];

  return(u.v);
}

uint32_t init_speed[5]  = {9600,19200,38400,57600,115200};

void SerialGpsPrint(const char PROGMEM  * str) {
  char b;
  while(str && (b = pgm_read_byte(str++))) {
    SerialWrite(GPS_SERIAL,  b);     
  }
}

void GPS_SerialInit(void) {
  SerialOpen(GPS_SERIAL,GPS_BAUD);
  delay(1000);
  #if defined(INIT_MTK_GPS)                              // MTK  GPS setup
    for(uint8_t i=0;i<5;i++){
      SerialOpen(GPS_SERIAL,init_speed[i]);                // switch UART speed for sending SET BAUDRATE command
      #if  (GPS_BAUD==19200)
        SerialGpsPrint(PSTR("$PMTK251,19200*22\\
"));     // 19200 baud - minimal speed for 5Hz update rate
      #endif  
      #if  (GPS_BAUD==38400)
        SerialGpsPrint(PSTR("$PMTK251,38400*27\\
"));     // 38400 baud
      #endif  
      #if (GPS_BAUD==57600)
        SerialGpsPrint(PSTR("$PMTK251,57600*2C\\
"));     // 57600 baud
      #endif  
      #if (GPS_BAUD==115200)
        SerialGpsPrint(PSTR("$PMTK251,115200*1F\\
"));    // 115200 baud
      #endif  
      while(!SerialTXfree(GPS_SERIAL)) delay(80);
    }
    // at this point we have GPS working at selected (via #define GPS_BAUD)  baudrate
    // So now we have to set the desired mode and update rate (which  depends on the NMEA or MTK_BINARYxx settings)
    SerialOpen(GPS_SERIAL,GPS_BAUD);

    SerialGpsPrint(MTK_NAVTHRES_OFF);
      while(!SerialTXfree(GPS_SERIAL))  delay(80);
    SerialGpsPrint(SBAS_ON);
      while(!SerialTXfree(GPS_SERIAL))  delay(80);
    SerialGpsPrint(WAAS_ON);
      while(!SerialTXfree(GPS_SERIAL))  delay(80);
    SerialGpsPrint(SBAS_TEST_MODE);
      while(!SerialTXfree(GPS_SERIAL))  delay(80);
    SerialGpsPrint(MTK_OUTPUT_5HZ);           // 5 Hz update rate

    #if defined(NMEA)
      SerialGpsPrint(MTK_SET_NMEA_SENTENCES); // only GGA  and RMC sentence
    #endif     
    #if defined(MTK_BINARY19) || defined(MTK_BINARY16)
      SerialGpsPrint(MTK_SET_BINARY);
    #endif
  #endif  // init_mtk_gps
}

bool  GPS_newFrame(uint8_t data) {
  bool parsed = false;

  restart:
  switch(_step)  {
    // Message preamble, class, ID detection
    //
    // If we fail  to match any of the expected bytes, we
    // reset the state machine and re-consider  the failed
    // byte as the first byte of the preamble.  This
    // improves  our chances of recovering from a mismatch
    // and makes it less likely that  we will be fooled by
    // the preamble appearing as data in some other message.
    //
    case 0:
      if(PREAMBLE1 == data)
        _step++;
      break;
    case 1:
      if (PREAMBLE2 == data) {
        _step++;
        break;
      }
      _step = 0;
      goto restart;
    case 2:
      if (sizeof(_buffer)  == data) {
        _step++;
        _ck_b = _ck_a = data;                  //  reset the checksum accumulators
        _payload_counter = 0;
      } else  {
        _step = 0;                             // reset and wait for a message  of the right class
        goto restart;
      }
      break;
      //  Receive message data
    case 3:
      _buffer.bytes[_payload_counter++] =  data;
      _ck_b += (_ck_a += data);
      if (_payload_counter == sizeof(_buffer))
        _step++;
      break;
      // Checksum and message processing
    case 4:
      _step++;
      if (_ck_a != data)
        _step = 0;
      break;
    case 5:
      _step = 0;
      if (_ck_b != data)
        break;
      f.GPS_FIX                   = ((_buffer.msg.fix_type ==  FIX_3D) || (_buffer.msg.fix_type == FIX_3D_SBAS));
      #if defined(MTK_BINARY16)
      GPS_coord[LAT]              = _buffer.msg.latitude * 10;    // XXX doc says  *10e7 but device says otherwise
      GPS_coord[LON]              = _buffer.msg.longitude  * 10;   // XXX doc says *10e7 but device says otherwise
      #endif
      #if  defined(MTK_BINARY19)
      GPS_coord[LAT]              = _buffer.msg.latitude;         // With 1.9 now we have real 10e7 precision
      GPS_coord[LON]              =  _buffer.msg.longitude;
      #endif
      GPS_altitude                = _buffer.msg.altitude  /100;    // altitude in meter
      GPS_speed                   = _buffer.msg.ground_speed;     // in m/s * 100 == in cm/s
      GPS_ground_course           = _buffer.msg.ground_course/100;  //in degrees
      GPS_numSat                  = _buffer.msg.satellites;
      //GPS_time                    = _buffer.msg.utc_time;
      //GPS_hdop                  = _buffer.msg.hdop;
      parsed = true;
  }
  return  parsed;
}
#endif //MTK

#endif //GPS SERIAL




/**************************************************************************************/
/***************                       I2C GPS                     ********************/
/**************************************************************************************/
#if  defined(I2C_GPS)
#define I2C_GPS_ADDRESS               0x20 //7 bits       

#define  I2C_GPS_STATUS_00             00    //(Read only)
  #define I2C_GPS_STATUS_NEW_DATA       0x01  // New data is available (after every GGA frame)
  #define I2C_GPS_STATUS_2DFIX          0x02  // 2dfix achieved
  #define I2C_GPS_STATUS_3DFIX          0x04  // 3dfix achieved
  #define I2C_GPS_STATUS_NUMSATS        0xF0  // Number of  sats in view
#define I2C_GPS_LOCATION              07    // current location  8 byte (lat, lon) int32_t
#define I2C_GPS_GROUND_SPEED          31    // GPS  ground speed in m/s*100 (uint16_t)      (Read Only)
#define I2C_GPS_ALTITUDE              33    // GPS altitude in meters (uint16_t)           (Read Only)
#define  I2C_GPS_GROUND_COURSE         35    // GPS ground course (uint16_t)
#define I2C_GPS_TIME                  39    // UTC Time from GPS in hhmmss.sss * 100 (uint32_t)(unneccesary  precision) (Read Only)
#define I2C_GPS_SONAR_ALT             239   // Sonar Altitude

uint8_t  GPS_NewData(void) {
  uint8_t i2c_gps_status;
  
  i2c_gps_status = i2c_readReg(I2C_GPS_ADDRESS,I2C_GPS_STATUS_00);                 //Get status register 
  
  #if defined(I2C_GPS_SONAR)
  i2c_read_reg_to_buf(I2C_GPS_ADDRESS, I2C_GPS_SONAR_ALT, (uint8_t*)&sonarAlt,2);
  #endif
  
  f.GPS_FIX = 0;	
  if (i2c_gps_status & I2C_GPS_STATUS_3DFIX)  {                                     //Check is we have a good 3d fix (numsats>5)
    f.GPS_FIX = 1;
    if (i2c_gps_status & I2C_GPS_STATUS_NEW_DATA) {                                //Check  about new data
      GPS_Frame = 1;
      if (GPS_update == 1) GPS_update  = 0; else GPS_update = 1; //Blink GPS update
      GPS_numSat = i2c_gps_status  >>4; 
      i2c_read_reg_to_buf(I2C_GPS_ADDRESS, I2C_GPS_LOCATION,     (uint8_t*)&GPS_coord[LAT],4);
      i2c_read_reg_to_buf(I2C_GPS_ADDRESS, I2C_GPS_LOCATION+4,   (uint8_t*)&GPS_coord[LON],4);
      // note: the following vars are currently not used in nav code -- avoid retrieving  it to save time
      //i2c_read_reg_to_buf(I2C_GPS_ADDRESS, I2C_GPS_GROUND_SPEED,  (uint8_t*)&GPS_speed,2);
      //i2c_read_reg_to_buf(I2C_GPS_ADDRESS, I2C_GPS_ALTITUDE,     (uint8_t*)&GPS_altitude,2);
      //i2c_read_reg_to_buf(I2C_GPS_ADDRESS,  I2C_GPS_GROUND_COURSE,(uint8_t*)&GPS_ground_course,2);
      return 1;
    }
  }
  return 0;
}
#endif //I2C_GPS



#endif // GPS Defined

接线图

Similar Posts

Leave a Reply